• Treffer 1 von 1
Zurück zur Trefferliste

Vergleich von Simulation und Teststrahlzeit fur den CBM-TRD

  • Das CBM-Experiment konzentriert sich auf die Untersuchung der Eigenschaften des Quark-Gluon-Plasmas bei hohen Netto-Baryonendichten und moderaten Temperaturen. An der zukünftigen Beschleunigeranlage FAIR an der GSI findet das Experiment, neben vielen anderen Experimenten, ihren Platz. Der TRD ist, neben dem RICH, STS und TOF, einer der zentralen Detektoren im CBM-Experiment. Der TRD nutzt dabei den physikalischen Effekt der Übergangsstrahlung, die durch ein geladenes Teilchen beim Durchqueren einer Grenze zweier Medien mit unterschiedlichen Dielektrizitätskonstanten mit einer gewissen Wahrscheinlichkeit entsteht, um Elektronen von Pionen trennen zu können. Im Jahr 2017 wurde an der DESY 4 TRD-Prototypen in einer Teststrahlzeit getestet. Dabei handelt es sich um große TRD-Module mit den Maßen 95 · 95 cm2 , was dem finalen Design sehr nahe kommt. Die Untersuchung der DESY-Daten in Kapitel 5 brachte große Problematiken in den Daten zum Vorschein. Die Hauptprobleme der DESY-Daten sind: 1) Bug des SPADIC-Chips 2.0, bei der FN-Trigger zeitlich verschoben wurden; 2) schwache und suboptimale Trigger-Bedingung, wodurch sehr viel Rauschen aufgenommen wurde. Die Daten müssen für weitere Auswertung aufbereitet werden, wobei sehr viel Information und Statistik verloren geht, da einige Daten durch diverse Probleme nicht mehr rekonstruierbar sind. Kapitel 6 beschäftigt sich mit der Simulation der Detektorantwort und geht genauer auf die einzelnen Schritte, die zur Simulation des vom SPADIC erzeugten Pulses benötigt werden, ein. Am Ende werden Ergebnisse aus beiden Datensätzen miteinander verglichen. Um einen optimalen Vergleich zu gewähren, wird die Simulation bestmöglich an die Einstellungen in der Teststrahlzeit angepasst. Hauptsächlich geht es um die Erhöhung des Gasgains und der Verschiebung der Peaking-Zeit des Pulses. Im Allgemeinen können wir in der Simulation einige Effekte, die auch in den DESY-Daten vorkommen, nachsimulieren. Wir erhalten zum Teil sehr unterschiedliche Ergebnisse in der Simulation, deren Richtigkeit nicht verifiziert werden kann, da die Daten aufgrund der Probleme unzuverlässig werden. Durch die Analyse der DESY-Daten konnten wir die Problematik in den Daten besser verstehen. Eine sinnvolle Anpassung der Simulation wird durch die Unzuverlässigkeit der DESY-Daten unmöglich. Für die Optimierung der Simulation müsste man einen Vergleich mit neueren, zuverlässigeren Daten aus zukünftigen Teststrahlzeiten nehmen.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Daniel Giang
URN:urn:nbn:de:hebis:30:3-619918
URL:https://www.uni-frankfurt.de/96681483/Masterarbeit_Daniel_Giang.pdf
Verlag:Goethe-Universität Frankfurt am Main, Institut für Kernphysik FB 13
Verlagsort:Frankfurt am Main
Gutachter*in:Christoph BlumeORCiDGND, Benjamin DönigusGND
Betreuer:Etienne Bechtel
Dokumentart:Masterarbeit
Sprache:Deutsch
Jahr der Fertigstellung:2020
Jahr der Erstveröffentlichung:2020
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:28.06.2020
Datum der Freischaltung:09.11.2022
Seitenzahl:78
HeBIS-PPN:502434279
Institute:Physik / Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoDeutsches Urheberrecht