Refine
Year of publication
Document Type
- Doctoral Thesis (20)
- Bachelor Thesis (14)
- Master's Thesis (12)
Has Fulltext
- yes (46)
Is part of the Bibliography
- no (46)
Keywords
- ALICE (2)
- ALICE <Teilchendetektor> (1)
- ALICE upgrade (1)
- ALICE, Teilchendetektor (1)
- Ageing (1)
- Blei (1)
- CBM (1)
- CBM experiment (1)
- CERN (1)
- Compressed Baryonic Matter (1)
Institute
- Physik (46)
Im Rahmen dieser Arbeit wurden grundlegende Eigenschaften von GEM-Verstärkungsstrukturen untersucht. Dies waren der Einfluss des Alignmenteffektes auf die Reproduzierbarkeit von Messungen, die Elektronenextraktionseffizienz von GEMs im allgemeinen und die Auswirkungen von Druckschwankungen auf die Gasverstärkung. Weiterhin wurden verschiedene vierlagige GEM-Verstärkungssysteme mit einer MP-GEM an erster Stelle in Hinblick auf Ionenrückfluss und Energieauflösung untersucht.
Der Alignmenteffekt ist noch nicht vollkommen verstanden und verlangt weitere Untersuchungen. Was aber definitiv gesagt werden kann ist, dass das Drehen der GEMs um 90° die Reproduzierbarkeit der Messergebnisse sicherstellt.
Die unterschiedlichen Elektronenextraktionseffizienzen der verschiedenen GEM-Typen sind noch unverstanden. Auch wenn die grundsätzliche Zunahme der Extraktion mit zunehmenden Transferfeld verständlich ist, so bleibt vor allem das Verhalten einer LP-GEM in diesem Kontext bis jetzt unerklärlich.
Die Versuche mit einer MP-GEM an erster Stelle einer vierlagigen Verstärkungsstruktur haben sich als keine Verbesserung im Vergleich zu den S-Konfigurationen herausgestellt. Auch wenn manche gefundenen Einstellungen die Kriterien von einem IBF von weniger als 1 % und einem σ(55Fe) von weniger als 12 % gleichzeitig erfüllen, liegen diese Messpunkte so knapp an den definierten Grenzen, dass sie nicht für den Betrieb in der Spurendriftkammer von ALICE geeignet sind. Eine Erkenntnis, die trotzdem gewonnen werden konnte, ist, dass sich das Verhalten von verschiedenen Konfigurationen verstehen lässt. So ist die beste untersuchte Konfiguration die MP-LP-LP-S-Konfiguration gewesen, danach folgte die MP-S-LP-S und als schlechteste hat die MP-S-LP-SP-Konfiguration abgeschnitten. Dies ist genau die gleiche Reihenfolge, wie sie auch bei den S-Konfigurationen auftritt: S-LP-LP-S, dann S-S-LP-S und danach S-S-LP-SP. Ein wichtiger Schritt in einem guten Kompromiss zwischen Ionenrückfluss und σ(55Fe), scheinen zwei LP-GEMs an zweiter und dritter Stelle zu sein und weniger der Lochabstand der letzten GEM.
Die Druckabhängigkeit der Gasverstärkung hat einen großen Einfluss auf die Verstärkung und damit auf die Reproduzierbarkeit von Messungen. Bei einem Höhenunterschied von ca. 400 m ergibt sich eine Änderung der Verstärkung von ca. 35 %. Zusätzlich wird dieser Effekt von lokalen Wetterbedingungen überlagert. Der Einfluss des Luftdruckes kann jedoch mit dem Fit in Abbildung 43 berücksichtigt und damit herausgerechnet werden
The Time Projection Chamber (TPC), a large gaseous detector, is the main particle identification device of the ALICE experiment at the CERN LHC. The desired performance of the TPC defines the requirements for the gas mixture used in the detector. The active volume was filled with either Ne-CO2 (90-10) or Ne-CO2-N2 (90-10-5) during the first LHC running period. For LHC Run 2 the gas mixture is changed to Ar-CO2. Calculations of relevant gas properties are performed for Ar-based gas mixtures and compared to Ne-based gas mixtures to identify the most suitable Ar mixture. The drift velocity of ions in Ar is lower than in Ne. The closing time of the gating grid has to be adjusted accordingly to avoid drift field distortions due to back-drifting ions. The drift times of ions in the TPC readout chambers are calculated for the respective gas mixtures to determine the time to collect all ions from the amplification region. For LHC Run 3 the TPC readout chambers will be upgraded. The Multiwire Proportional Chambers (MWPCs) will be replaced by readout chambers based on Gas Electron Multipliers (GEMs) which are operated in continuous mode. As a consequence an ion backflow of the order of 1% causes significant space-charge distortions in the TPC drift volume. Similar distortions are expected in data taken specifically for the study of space-charge effects at the end of Run 1. The gating grid of the MWPCs is operated in the open state allowing the ions from the amplification region to enter the drift volume. The magnitude of the distortions in this data is measured and compared to the expectations for the TPC upgrade and results from current simulations.
Da in der Run 3 Periode des CERN LHC die Kollisionsrate auf 50 kHz erhöht werden soll, muss die ALICE TPC umgebaut werden. Die Vieldrahtproportionalkammern mit Sperrgitter sollen gegen eine GEM-basierte Auslese ausgetauscht werden, um eine kontinuierliche Auslese zu ermöglichen.
Es wurde eine GEM-Testkammer, die mit drei und vier GEM-Folien betrieben werden kann, entwickelt und gebaut. GEM-Folien wurden unter dem Mikroskop auf Fehler untersucht und auf ihre Spannungsfestigkeit hin getestet sowie gerahmt und in die Kammer eingesetzt. Mit der fertigen kleinen TPC mit GEM-basierter Auslese wurden IBF und Energieauflösung gemessen. Ziel der Messungen war es, einen möglichst geringen IBF von unter 1 % zu erhalten, um so wenig wie möglich Feldverzerrungen im Driftvolumen der TPC zu erhalten, bei gleichzeitig guter Energieauflösung von mindestens 12 %, um eine gute Teilchenidentifikation in der TPC sicherzustellen.
Da standard GEM-Konfigurationen mit nur drei GEM-Folien zwar eine gute Energieauflösung, jedoch zu viel IBF aufweisen, wurden die Messungen hauptsächlich mit vier GEM-Folien durchgeführt. Es wurden zwei verschiedene Arten von GEM-Folien verwendet, Standard (S) und Large-Pitch (LP) GEM-Folien, die bei einem Großteil der Messungen in der S-LP-LP-S-Konfiguration angeordnet waren.
Es wurde festgestellt, dass sich IBF und Energieauflösung gegenläufig verhalten, bei besser werdendem IBF also die Energieauflösung schlechter wird und umgekehrt.
Es wurden zwei verschiedene Gasmischungen, Ne-CO2-N2 (90-10-5) und Ar-CO2 (90-10), untersucht. Mit Neon wurde bei einem Gain von 2000 gemessen, mit Argon nur bei einem Gain von 1000, da bei Argon die Anzahl der produzierten Elektronen pro cm etwa doppelt so groß ist.
Der IBF war mit beiden Gasmischungen etwa gleich groß. Die Energieauflösung war mit Argon jedoch aufgrund des niedrigeren Gains erheblich schlechter. Mit Ne-CO2-N2 (90-10-5) gelang es, einen Arbeitspunkt mit einer Energieauflösung von etwa 12 % und einem IBF von unter 1 % zu finden, mit Ar-CO2 (90-10) war dies jedoch nicht der Fall.
Die Struktur der uns umgebenden Materie sowie die zwischen ihren Bestandteilen wirkenden Kräfte waren schon immer eine der zentralen wissenschaftlichen Fragestellungen. Nach den gegenwärtigen Erkenntnissen ist die uns umgebende Materie aus einigen wenigen Elementarteilchen aufgebaut; sechs Quarks und sechs Leptonen. Zwischen ihnen wirken vier fundamentale Kräfte; die starke, die schwache, die elektromagnetische und die Gravitationskraft. Dominierende Kraft zwischen Quarks ist auf kleinen Skalen, wie im Inneren von Nukleonen, die starke Kraft. Die sie beschreibende Theorie ist die Quantum Chromo Dynamic (QCD). Eine besondere Eigenschaft der QCD ist die Vorhersage, dass Quarks nur in gebundenen Zuständen auftreten, entweder als Paar (Mesonen) oder als Kombination aus drei Quarks (Baryonen). Tatsächlich wurden bisher keine freien Quarks experimentell gefunden. Dieses Phänomen wird als "confinement" bezeichnet. Es stellt sich die Frage, ob es möglich ist, einen Materiezustand zu erzeugen in welchem sich die Quarks in einem ausgedehnten Volumen wie freieTeilchen verhalten. Tatsächlich sagen theoretische Berechnungen einen solchen Zustand, das Quark-Gluon-Plasma, für sehr hohe Temperaturen und/oder Dichten voraus. Ultrarelativistische Schwerionenkollisionen sind die einzige derzeit bekannte Möglichkeit, die nötigen Temperaturen und Dichten im Labor zu erreichen. Erschwert wird die Interpretation des hierbei erzeugten Materiezustandes durch die Tatsache, dass im Experiment nur der hadronische Endzustand der Kollision beobachtet werden kann, auf Grund der sehr kurzen Zeitskala jedoch nicht die erzeugte Materie selbst. Trotzdem wurden inzwischen einige Observablen gemessen, die einen Rückschluss auf den Materiezustand in den frühen Phasen der Kollision zulassen. Die kombinierte Information legt die Bildung eines "deconfinten" Zustandes nahe. Eine dieser Proben ist die Produktion von schweren Quarkonia, d.h. Mesonen, die aus charm-anticharm (bzw. bottom-antibottom) Quarkpaaren bestehen. Wie in Kapitel 2 näher erläutert, kann von ihrer Produktion möglicherweise auf die in der Kollision erreichte Temperatur geschlossen werden. Das bisherige experimentelle Programm konzentrierte sich auf die Messung des J/Ã Mesons, dem 1S Zustandes des charm - anticharm Systems. Wie von der Theorie vorhergesagt, wurde eine Unterdrückung seiner Produktion in Schwerionenkollisionen relativ zur Produktion in Proton-Proton-Kollisionen beobachtet, z.B. vom Experiment NA50 am SPS Beschleuniger des Europäischen Zentrums für Teilchenphysik CERN, wie in Abbildung 2.2 gezeigt.Die Deutung dieser Meßdaten ist jedoch umstritten. Neben einer Interpretation im Rahmen des oben beschriebenen Modells können die Daten sowohl von hadronischen Modellen als auch von statistischen Hadronisierungsmodellen, die eine Bildung des cc Zustandes nicht in den initialen Partonkollisionen, sondern erst beim Übergang zum hadronischen Endzustand annehmen, beschrieben werden. Eine Möglichkeit, einzelne Modelle zu falsifizieren bzw. einige der Modellparameter weiter einzuschränken, besteht in der Messung anderer Quarkonia Zustände als dem J/Ã Meson. Hier wären zum einen die anderen Zustände der cc Familie zu nennen, z.B. das Âc(1P). Dieses ist jedoch durch seine Zerfallskanäle experimentell nur schwer nachzuweisen. Eine andere Möglichkeit bietet die Messung von Bindungszuständen zwischen bottom Quarks. Das bb System hat durch die grössere Massendifferenz zwischen dem ersten Bindungszustand, dem (1S), und der für die Erzeugung zweier Hadronen mit jeweils einem bottom und einem leichten Quark, wesentlich mehr Zustände als das cc System. Experimentell sind durch den Zerfallskanal in zwei Leptonen insbesondere die Upsilon gut nachzuweisen.Die Messung von Upsilons in ultrarelativistischen Schwerionenkollisionen ist jedoch experimentell äusserst herausfordernd. Durch die große Masse von circa 10 GeV/c2 ist die Produktionswahrscheinlichkeit sehr klein im Vergleich zu leichteren Teilchen, zum Beispiel dem nur 3.14 GeV/2 schwerem J/Ã. Der im Jahr 2000 in Betrieb genommene Relativistic Heavy Ion Collider (RHIC, siehe Kapitel 3.1) des Brookhaven National Laboratories (BNL) auf Long Island in der Nähe vonNew York erreicht zum ersten Mal eine ausreichend grosse Schwerpunktsenergie und Luminosit ät, welche eine Upsilon Messung möglich erscheinen lassen. Die Entwicklung des experimentellen Programms zur Messung von Upsilons mit dem STAR Detektor am RHIC und erste Ergebnisse aus der Strahlzeit der Jahre 2003/2004 werden in dieser Arbeit beschrieben. Herzstück des STAR Detektors, der in Kapitel 3.2 näher beschrieben wird, ist eine Time Projection Chamber (TPC) welche die Rekonstruktion geladener Teilchen in einem grossen Phasenraumbereich bei mittlerer Rapidität erlaubt. In den Jahren 2001 bis 2005 wurde das Experiment um elektromagnetische Kalorimeter (BEMC, EEMC) erweitert, mit welchen zusätzlich die Energie von Photonen und Elektronen bestimmt werden kann. Die verschiedenen Detektoren des STAR Detektorsystems können in zwei, durch ihre mögliche Ausleserate definierte, Klassen eingeteilt werden. Ein Teil der Detektoren wird bei jedem RHIC Bunch Crossing ausgelesen, d.h. mit einer Frequenz von 9.3 MHz. Zu dieser Klasse der sogenannten Triggerdetektoren gehören unter anderem das schon erwähnte elektromagnetische Kalorimeter, der Central Trigger Barrel (CTB), die Zero Degree Calorimeter (ZDC) und die Beam-Beam Counter (BBC). Die Time Projection Chamber und einige andere Detektoren, wie z.B. der Silicon Vertex Tracker (SVT), können im Gegensatz dazu nur mit maximal 100 Hz ausgelesen werden.
Im Laufe dieser Bachelor-Arbeit wurden verschiedene GEM-Anordnungen systematisch auf ihr IBF-Verhalten hin untersucht. Neben der Reproduktion zuvor durchgeführter Messungen wurden auch neue GEM-Kombinationen getestet. Insbesondere lag der Fokus darauf, eine Verbesserung des IBFs gegenüber des Baseline-Setups zu erzielen. Dabei kamen neben der bisher verwendeten S und LP Folien auch SP Folien zum Einsatz. Die Messungen brachten jedoch kein Ergebnis hervor, welches als Verbesserung gegenüber der Ausgangslage angesehen werden könnte. Da mit SP GEMs zuvor wenig gearbeitet wurde, war es unter anderem ein Ziel, zu untersuchen, wie sich die Verwendung dieser GEMs auf den IBF auswirkt. Insbesondere war die Frage zu klären, ob durch ihre Verwendung der IBF des Baseline-Setups
verbessert werden kann. Zum besseren Verständnis wurde ebenfalls eine Variante, S-S-LPS, untersucht. Für dieses Setup konnte durch die Verwendung einer SP Folie auf Position 4 eine Verbesserung des IBF bewirkt werden, für das Baseline-Setup jedoch nicht. Ein wesentliches Ergebnis dieser Bachelor-Arbeit war, dass das Alignment der GEMs, entgegen bisheriger Annahmen, eine große praktische Relevanz hat. Die relative Orientierung zweier aufeinander folgender GEMs gleichen Lochabstands zueinander hat einen großen Ein
uss auf die lokale Ionentransmission. Eine genauere Untersuchung hat ergeben, dass man dem entgegenwirken kann, indem man aufeinander folgende GEMs um 90° gedreht einbaut. Aufgrund der Geometrie der Folien verhindert man dadurch, dass sich die Löcher zweier Folien direkt ßber- bzw. untereinander anordnen. Ein solcher Aufbau konnte durch eine geringfügige Modifikation der Testkammer erreicht werden.
Mit diesem veränderten Aufbau wäre es nun das Ziel gewesen, alle bisherigen Messungen zu wiederholen und auf Reproduzierbarkeit hin zu überprüfen. Die Wiederholung einer Messreihe mit um 90° gedrehten GEMs hat im Rahmen der Fehlertoleranzen reproduzierbare
Ergebnisse geliefert. Aus zeitlichen Gründen war es jedoch im Rahmen dieserArbeit nicht möglich, eine vollständige Wiederholung aller Messungen durchzuführen. Dies wurde zu einem späteren Zeitpunkt von anderen Personen getan.
In dieser Arbeit wurden die ersten Schritte unternommen um Elektronen aus den Zerfällen schwerer Quarks zu messen. Im Folgenden wird zunächst ein Überblick zum physikalische Hintergrund gegeben und der elliptische Fluss als Sonde zur Untersuchung des QGP motiviert. Anschließend werden der LHC und ALICE näher beleuchtet und die einzelnen Detektorsysteme, die für diese Analyse wichtig sind, vorgestellt. Im weiteren wird eine Methode zur Identifizierung von Elektronen vorgestellt und die Kontamination des Elektronensignals durch Hadronen bestimmt. Abschließend wird der elliptische Fluss eines von Hadronen bereinigten Inklusiv-Elektronen Spektrums bestimmt und ein Ausblick auf weitere Analyseschritte gegeben.
The strong nuclear force is described by Quantum Chromodynamics (QCD), the parallel field theory to Quantum Electrodynamics (QED) that describes the electromagnetic force. It is propagated by gluons analogously to photons in the electromagnetic force, but unlike photons, which do not carry electric charge, gluons carry color, and they can self-interact. However, as individual quarks have never been observed in nature, it is postulated that the color charge itself is confined, and hence all baryons and mesons must be colorless objects. To study nuclear matter under extreme conditions, it is necessary to create hot and dense nuclear matter in the laboratory. In such conditions the confinement between quarks and gluons is cancelled (deconfinement). This state is characterized with a qusi-free behavior of quarks and gluons. The strange (s) and anti-strange (anti-s) quarks are not contained in the colliding nuclei, but are newly produced and show up in the strange hadrons in the final state. It was suggested that strange particle production is enhanced in the QGP with respect to that in a hadron gas. This enhancement is relative to a collision where a transition to a QGP phase does not take place, such as p+p collisions where the system size is very small. Therefore the energy- and system size dependence is studied to receive a picture about the initial state. In this thesis experimental results on the energy- and system size dependence of Xi hyperon production at the CERN SPS is shown. All measurements were performed with the NA49 detector at the CERN SPS. NA49 took central lead-lead collisions from 20 - 158 AGeV, minimus bias lead-lead collisions at 40 and 158 AGeV, and semi-central silicon-silicon colisions at 158 AGeV. The NA49 experiment features a large acceptance in the forward hemisphere allowing for measurements of Xi rapidity spectra. At the SPS accelerator at CERN Pb+Pb collisions are performed with beam energies to 158 AGeV. The analyzed data sets were taken in the period from 1999 to 2002. The NA49 experiment is a large acceptance hadron spectrometer, which measures charged hadrons in a wide acceptance. The main components are the four TPCs (Time Projection Chamber). The centrality of nucleon-nucleon collisions was done by measuring the not in the collision participating (spectator-) nucleons in the VETO-calorimeter. The study of strangeness is motivated by its role as a signature for the Quark Gluon Plasma. Any enhancement in the yield must be with respect to a ’normal’ yield, where a QGP is not formed. This is usually taken to mean suitably scaled p+p collisions, where the volume of the system created is too small for a QGP to occur. The results at SPS and RHIC energies show an enhancement, with the doubly strange Xi? being enhanced more than the Lambda, in accordance with the original prediction. However, the enhancement at SPS energies is higher than at RHIC energies.
The production of quarkonia, the bound state of an heavy quark with its anti-particle, has for a long time been seen as a key process to understand the properties of nuclear matter in a relativistic heavy-ion collision. This thesis presents studies on the production of quarkonia in heavy-ion collisions at the new Large Hadron collider (LHC). The focus is set on the decay of J/Psi and Upsilon-states into their di-electronic decay channel, measured within the central detectors of the ALICE detector.
Optimierung der Rekonstruktionsparameter zur Messung von Quarkonia im zentralen ALICE Detektor
(2011)
Seit den ersten Kollisionen im November 2009 läuft der LHC am CERN und dringt in noch nie dagewesene Energiebereiche vor. Die Schwerionenkollisionen innerhalb des ALICE Detektors sollen Aufschluss über die stark wechselwirkende Materie und ihre verschiedenen Phasen geben. Dem liegt die Untersuchung des Quark-Gluon-Plasmas zugrunde. Eine Signatur des Quark-Gluon-Plasmas ist die Rate von produzierten Quarkonia. Diese zerfallen in Leptonenpaare und sind damit zu identifizieren.
In der vorliegenden Arbeit wird diese Rate zur Messung von Quarkonia aufgegriffen und untersucht. Bei der Untersuchung der Simulation durch die Selektion der e++e--Paare, die ausschließlich aus einem J/y stammen, lässt sich ein Massenspektrum produzieren, das im Rahmen dieser Arbeit genauer betrachtet wurde. Durch die genaue Untersuchung der Bremsstrahlung und deren Lokalisierung lässt sich zeigen, dass besonders der ITS ein hohes Maß an Bremsstrahlungsprozessen mit sich bringt, was auf die große Materialanhäufung zurückzuführen ist. Um dies näher zu untersuchen, wurde das Augenmerk auf den ITS gelegt. Eines der wichtigsten Merkmale, die den Bremsstrahlungsprozess beschreiben, ist der Energieverlust. Durch die Bethe-Heitler-Funktion lässt sich der gesamte Detektor nur bedingt beschreiben. Erst die Betrachtung, die sich mit einer Einschränkung auf den ITS und den Azimutwinkel beschäftigt, zeigt eine genaue Beschreibung durch die Parameter der Funktion.
Nach der genauen Beschreibung der Bremsstrahlung wurden verschiedene Methoden entwickelt, in denen die Bremsstrahlungsprozesse innerhalb des invarianten Massenspektums der e++e--Paare ausgeschnitten werden können. Die Methoden der Selektion durch die Anzahl der Spurpunkte sowie die Selektion durch die Position der Spurpunkte zeigen, dass bereits minimale Selektionen ein sehr gutes Signal ergeben. Durch den Vergleich mit den herkömmlichen Selektionen SPDany und SPDfirst, zeigt sich, dass hierbei viel Signal verloren geht und diese Methode für bestimmte Analysen optimiert werden kann.
Durch die Anwendung auf die Datensätze, die während einer Strahlzeit im Jahr 2010 genommen wurden, bestätigte sich die Vermutung. Durch die Selektion von SPDany wird das Signal reduziert. Vergleicht man die Anzahl der Einträge im Signalbereich durch die Reduktion der Teilchen ohne Spurpunkte im ITS (NITSpunkten>0) zu der Anzahl der Einträge durch SPDany, ergibt dies eine Verminderung von bis zu 40%. Die Ursache für den großen Verlust innerhalb des Signalbereichs wird zusätzlich verstärkt, indem der SPD durch Kühlungsprobleme ausgeschaltet ist.
Eine weitere Methode, die untersucht wurde, war die Reduktion der Auswirkungen von Bremsstrahlung mit Hilfe der Kinkanalyse. Diese Methode ließ keine qualitativen Rückschlüsse auf die Analyse der Bremsstrahlung zu.
Dennoch zeigt das Ergebnis, dass das Signal von J/y’s in Proton-Proton Kollisionen um mehr als 40% mehr Einträge verbessert werden kann und sich dieses Prinzip nicht nur theoretisch in den simulierten Daten niederschlägt sondern auch in den untersuchten Datensätzen. Nun gilt es, diese Methode auch in anderen Studien einzubauen, um so eine alltagstaugliche Überprüfung der Erkenntnisse zu gewährleisten.