• search hit 1 of 147
Back to Result List

Blockchains in public administration : a RADIUS on blockchain framework for public administration

  • The emergence of blockchain technology has generated a great deal of attention, as reflected in numerous scientific and journalistic articles. However, the implementation of blockchain for public administrations in Germany has encountered a setback owing to unsuccessful initiatives. Initial enthusiasm was followed by disillusionment. Nevertheless, technology continues to evolve. This paper examines whether the use of a blockchain can still optimize the processes of public administrations. Not only the failed projects are analysed, but also more current applications of the technology and their potential relevance for the administration, especially in the state of Hesse. To answer if blockchains are promising to administrations, a Design Science Research (DSR) research approach is chosen. The DSR method is a research-based approach that aims to create new and innovative solutions to real-world problems through the development and evaluation of artefacts such as models, methods, or prototypes. For this work, the implementation of a framework to realize an Authentication, Authorization, and Accounting (AAA) system on the blockchain was identified as profitable. The framework aims to implement the aforementioned AAA tasks using a blockchain. The Remote Authentication Dial-In User Service (RADIUS) protocol has been identified as a potential protocol of the AAA system. The goal is to create a way to implement the system either entirely on a blockchain or as a hybrid system. Various blockchain technologies will be considered. Suitable for development, the framework AAA-me is named. The development of AAA-me has shown that the desired framework for implementing RADIUS on the blockchain is possible in various degrees of implementation. Previous work mostly relied on full development. Additionally, it has been shown that AAA-me can be used to perform hybrid integration at different implementation levels. This makes AAA-me stand out from the few hybrid previous approaches. Furthermore, AAA-me was investigated in different laboratory environments. This was to determine the expected resilience against Single Point of Failure (SPOF). The results of the lab investigation indicated that a RADIUS system on top of a blockchain can provide benefits in terms of security and performance. In the lab environment, times were measured within which a series of authorization requests were processed. In addition, it was illustrated how a RADIUS system implemented using blockchain can protect itself against Man-in-the-Middle (MITM) attacks. Finally, in collaboration with the Hessian Central Office for Data Processing (German: Hessische Zentrale für Datenverarbeitung) (HZD), another test lab demonstrated how a RADIUS system on the blockchain can integrate with the existing IT systems of the German state of Hesse. Based on these findings, this work reevaluated the applicability of blockchain technology for public administration processes. The work has thus shown that the use of a blockchain can still be purposeful. However, it has also been shown that an implementation can bring many problems with it. The small number of blockchain developers and engineers also poses the risk of finding people to develop and maintain a system. In addition, one faces the problem of determining an architecture now that will be applied to many projects in the future. However, each project can, in turn, have an impact on the choice of architecture. Once one has solved this problem and a blockchain infrastructure is available, it can be established quickly and be more SPOF resistant, for example, for Public Key Infrastructure (PKI) systems. AAA-me was only applied in lab and test environments. As a result, no real data ran over its own infrastructure. This allowed the necessary flexibility for development. However, system-related properties could appear in real situations that are not detectable here in this way. Furthermore, the initial stage of AAA-me’s development is still in its infancy. Many manual adjustments need to be made in order for this to integrate with an existing RADIUS system. Also, no system security effort in and of itself has been carried out in the lab environments. Thus, vulnerabilities can quickly open up on web servers due to misconfigurations and missing updates. For the above reasons, productive use should be discouraged unless major developments are carried out.

Download full text files

Export metadata

Metadaten
Author:Zeki Nejat Philipp Konstantin LangORCiDGND
URN:urn:nbn:de:hebis:30:3-832497
DOI:https://doi.org/10.21248/gups.83249
Place of publication:Frankfurt am Main
Referee:Udo KebschullORCiDGND, Volker LindenstruthORCiD
Advisor:Udo Kebschull
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/04/02
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/03/14
Release Date:2024/04/02
Tag:Blockchain; Public Administration; RADIUS Protocol
Page Number:251
HeBIS-PPN:516760564
Institutes:Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0