• search hit 12 of 29282
Back to Result List

New insights in LUBAC- and OTULIN- mediated M1 poly-ubiquitination in the regulation of bulk and selective autophagy

  • Autophagy is an important degradation pathway mediating the engulfment of cellular material (cargo) into autophagosomes followed by degradation in autophagosomes. Different stress stimuli, e.g. nutrient deprivation, oxidative stress or organelle damage, engage autophagy to maintain cellular homeostasis, recycle nutrients or remove damaged cell organelles. Autophagy not only degrades bulk cytoplasmic material but also selective autophagic cargo, for example lysosomes (lysophagy), mitochondria (mitophagy), ER (ER-phagy), lipid droplets (lipophagy), protein aggregates (aggrephagy) or pathogens (xenophagy). Selective autophagy pathways are regulated by selective autophagy receptors which bind to ubiquitinated cargo proteins and link them to LC3 on the autophagosomal membrane. Ubiquitination is an essential post-translational modification controlling different cellular processes such as proteasomal and lysosomal degradation or innate immune signaling. M1-linked (linear) poly-Ubiquitin (poly-Ub) chains are exclusively assembled by the E3 ligase linear ubiquitin chain assembly complex (LUBAC) and removed by the M1 poly-Ub-specific OTU domain-containing deubiquitinase with linear linkage specificity (OTULIN). In addition to key functions in innate immune signaling and nuclear factor-κB (NF-κB) activation, M1 ubiquitination is also implicated in the regulation of autophagy. LUBAC and OTULIN control autophagy initiation and maturation and the autophagic clearance of invading bacteria via xenophagy. However, additional functions of LUBAC- and OTULIN-regulated M1 ubiquitination in autophagy are largely unknown and it also remains unexplored if LUBAC and OTULIN control other selective autophagy pathways in addition to xenophagy. This study aimed to unravel the role of LUBAC- and OTULIN-controlled M1 ubiquitination in bulk and selective autophagy in more detail. In this study, characterization of OTULIN-depleted MZ-54 glioblastoma (GBM) cells revealed that OTULIN deficiency results in enhanced LC3 lipidation in response to autophagy induction and upon blockade of late stage autophagy with Bafilomycin A1 (BafA1). Furthermore, electron microscopy analysis showed that OTULIN-deficient cells have an increased number of degradative compartments (DGCs), confirming enhanced autophagy activity upon loss of OTULIN. APEX2-based autophagosome content profiling identified various OTULIN-dependent autophagy cargo proteins. Among these were the autophagy receptor TAX1BP1 which regulates different forms of selective autophagy (e.g. lysophagy, aggrephagy) and the glycan-binding protein galectin-3 which serves key functions in lysophagy, suggesting a role of OTULIN and M1 poly-Ub in the regulation of aggrephagy and lysophagy. Abstract 2 To study aggrephagy, protein aggregation was induced with puromycin which causes premature termination of translation and accumulation of defective ribosomal products (DRiPs). Loss of OTULIN increased the number of M1 poly-Ub-positive foci and insoluble proteins and reduced the levels of soluble TAX1BP1 and p62 in response to puromycin-induced proteotoxic stress. Intriguingly, upon induction of lysosomal membrane permeabilization (LMP) with the lysosomotropic drug L-Leucyl-L-Leucine methyl ester (LLOMe), M1 poly-Ub strongly accumulated at damaged lysosomes and colocalized with TAX1BP1- and galectin-3-positive puncta. M1 poly-Ub-modified lysosomes formed a platform for NF-κB essential modulator (NEMO) and inhibitor of κB (IκB) kinase (IKK) complex recruitment and local NF-κB activation in a K63 poly-Ub- and OTULIN-dependent manner. Furthermore, inhibition of lysosomal degradation enhanced LLOMe-induced cell death, suggesting pro-survival functions of lysophagy following LMP. Enrichment of M1 poly-Ub at damaged lysosomes was also observed in human dopaminergic neurons and in primary mouse embryonic cortical neurons, confirming the importance of M1 poly-Ub in the response to lysosomal damage. Together, these results identify OTULIN as a negative regulator of autophagy induction and the autophagic flux and reveal OTULIN-dependent autophagy cargo proteins. Furthermore, this study uncovers novel and important roles of M1 poly-Ub in the response to lysosomal damage and local NF-κB activation at damaged lysosomes.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Laura ZeinORCiDGND
URN:urn:nbn:de:hebis:30:3-863353
DOI:https://doi.org/10.21248/gups.86335
Place of publication:Frankfurt am Main
Referee:Stefan Knapp, Sjoerd J. L. van Wijk
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/07/19
Year of first Publication:2024
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/07/11
Release Date:2024/07/19
Tag:Autophagy; M1 Ubiquitination; OTULIN
Page Number:141
HeBIS-PPN:520038142
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht