Komplexität von Gitterproblemen : Nicht-Approximierbarkeit und Grenzen der Nicht-Approximierbarkeit
- Ein Gitter vom Rang n ist die Menge der ganzzahligen Linerkombinationen von n linear unabhängigen Vektoren im Rm. Unter der Annahme P <> NP beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der eine kürzeste Gitterbasis bis auf einen Faktor nO exp(1/log log n) berechnet, wobei die Länge einer Menge von Vektoren durch die maximale Euklidische Länge der Vektoren definiert ist. Weiter zeigen wir, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n/ sqrt(log n) unter plausiblen Annahmen nicht möglich ist. Ein simultaner Diophantischer Best Approximations Nenner für reelle Zahlen alpha1, .... , alpha n und Hauptnennerschranke N ist eine natürliche Zahl q mit 1 <= q >= N, so daß maxi minp2Z |q alpha i - p| minimal ist. Unter der Annahme, daß die Klasse NP keine fast-polynomiellen Algorithmen besitzt, beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der für gegebene rationale Zahlen. Ein Gitter vom Rang n ist die Menge der ganzzahligen Linerkombinationen von n linear unabhängigen Vektoren im Rm. Unter der Annahme P 6= NP beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der eine kürzeste Gitterbasis bis auf einen Faktor nO(1= log log n) berechnet, wobei die Länge einer Menge von Vektoren durch die maximale Euklidische Länge der Vektoren definiert ist. Weiter zeigen wir, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n=plog n unter plausiblen Annahmen nicht möglich ist. Ein simultaner Diophantischer Best Approximations Nenner für reelle Zahlen alpha1, .... , alpha n und Hauptnennerschranke N ist eine natürliche Zahl q mit 1 <= q <= N, so daß maxi ...... minimal ist. Unter der Annahme, daß die Klasse NP keine fast-polynomiellen Algorithmen besitzt, beweisen wir, daß kein Polynomialzeit-Algorithmus existiert, der für gegebene rationale Zahlen alpha1,......, alphan und eine Hauptnennerschranke N einen Nenner ~q mit 1 <= ~q <= f(n)N berechnet, so daß ~q bis auf einen Faktor f(n) = nO(1= log0:5+epsilon n) ein Best Approximations Nenner ist, wobei epsilon > 0 eine beliebige Konstante ist. Wir zeigen, daß eine Verbesserung dieses Resultates bis hin zu einem Faktor n=log n unter plausiblen Annahmen nicht mölich ist. Wir untersuchen die Konsequenzen dieser Resultate zur Konstruktion von im Durchschnitt schwierigen Gitterproblemen.