Bayessche Methoden zur Schätzung von Stammbäumen mit Verzweigungszeitpunkten aus molekularen Daten
- Ein großes Ziel der Evolutionsbiologie ist es, die Stammesgeschichte der Arten zu rekonstruieren. Historisch verwendeten Systematiker hierfür morphologische und anatomische Merkmale. Mit dem stetigen Zuwachs an verfügbaren Sequenzdaten werden heute verstärkt Methoden entwickelt und eingesetzt, welche die Rekonstruktion auf Basis von molekularen Daten ermöglichen. Im Fokus der aktuellen Forschung steht die Anwendung und Weiterentwicklung Bayesscher Methoden. Diese Methoden besitzen große Popularität, da sie in Verbindung mit Markov-Ketten-Monte-Carlo-Verfahren eingesetzt werden können, um einen Stammbaum zu vorgegebenen Spezies zu schätzen und dessen Variabilität zu bestimmen. Im Rahmen dieser Dissertation wurde die erweiterbare Software TreeTime entwickelt. TreeTime bietet Schnittstellen für die Einbindung von molekularen Evolutions- und Ratenänderungsmodellen und stellt neu entwickelte Methoden bereit, um Stammbäume mit Verzweigungszeitpunkten zu rekonstruieren. In TreeTime werden die molekularen Daten und die zeitlichen Informationen, wie z.B. Fossilfunde, in einem Bayes-Verfahren simultan berücksichtigt, um die Zeitpunkte der Artaufspaltungen genauer zu datieren. Für die Anwendung Bayesscher Methoden in der Rekonstruktion von Stammbäumen wird ein stochastisches Modell benötigt, das die Evolution der molekularen Sequenzen entlang den Kanten eines Stammbaums beschreibt. Der Mutationsprozess der Sequenzen wird durch ein molekulares Evolutionsmodell definiert. Die Verwendung der klassischen molekularen Evolutionsmodelle impliziert die Annahme einer konstanten Evolutionsgeschwindigkeit der Sequenzen im Stammbaum. Diese Annahme wird als Hypothese der molekularen Uhr bezeichnet und bildet die Grundlage zum Schätzen der Verzweigungszeiten des Stammbaums. Der Verzweigungszeitpunkt, an dem sich zwei Spezies im Stammbaum aufspalten, spiegelt sich in der Ähnlichkeit der zugehörigen molekularen Sequenzen. Je älter dieser Verzweigungszeitpunkt ist, desto größer ist die Anzahl der unterschiedlichen Positionen in den Sequenzen. Häufig ist jedoch die Annahme der molekularen Uhr verletzt, so dass in gewissen Teilbereichen eines Stammbaums eine erhöhte Evolutionsgeschwindigkeit nachweisbar ist. Falls die Verletzung konstanter Evolutionsgeschwindigkeiten nicht ausgeschlossen werden kann, sollten schwankende Mutationsraten in der Modellierung explizit berücksichtigt werden. Hierfür wurden verschiedene Ratenänderungsmodelle vorgeschlagen. Bisher sind nur wenige dieser Ratenänderungsmodelle in Softwarepaketen verfügbar und ihre Eigenschaften sind nicht ausreichend erforscht. Das Ziel dieser Arbeit ist die Entwicklung und Bereitstellung von Bayesschen Modellen und Methoden zum Schätzen von Stammbäumen mit Verzweigungszeitpunkten. Die Methoden sollten auch bei unterschiedlichen Evolutionsgeschwindigkeiten im Stammbaum anwendbar sein. Vorgestellt wird ein neues Ratenänderungsmodell, eine neue Möglichkeit der Angabe von flexiblen Beschränkungen für die Topologie des Stammbaums sowie die Nutzung dieser Beschränkungen für die zeitliche Kalibrierung. Das neue Raten Änderungsmodell sowie die topologischen und zeitlichen Beschränkungen werden in einen modularen Softwareentwurf eingebettet. Durch den erweiterbaren Entwurf können bestehende und zukünftige molekulare Evolutionsmodelle und Ratenänderungsmodelle in die Software eingebunden und verwendet werden. Die vorgestellten Modelle und Methoden werden gemäß dem Softwareentwurf in das neu entwickelte Programm TreeTime aufgenommen und effzient implementiert. Zusätzlich werden bereits vorhandene Modelle programmiert und eingebunden, die nicht in anderen Softwarepaketen verfügbar sind. Des Weiteren wird eine neue Methode entwickelt und angewendet, um die Passgenauigkeit eines Modells für die Apriori-Verteilung auf der Menge der Baumtopologien zu beurteilen. Diese Methode wird zur Auswahl geeigneter Modelle benutzt, indem eine Auswertung der beobachteten Baumtopologien der Datenbank TreeBASE durchgeführt wird. Anschließend wird die Software TreeTime in einer Simulationsstudie eingesetzt, um die Eigenschaften der implementierten Ratenänderungsmodelle zu vergleichen. Die Software wird für die Rekonstruktion des Stammbaums zu 38 Spezies aus der Familie der Eidechsen (Lacertidae) verwendet. Da die zugehörigen molekularen Daten von der Hypothese der molekularen Uhr abweichen, werden unterschiedliche Ratenänderungsmodelle bei der Rekonstruktion verwendet und abschließend bewertet. ........
Author: | Lin HimmelmannGND |
---|---|
URN: | urn:nbn:de:hebis:30-74998 |
Place of publication: | Frankfurt am Main |
Referee: | Dirk MetzlerORCiDGND, Markus PfenningerORCiDGND, Rudolf MesterORCiD |
Document Type: | Doctoral Thesis |
Language: | German |
Date of Publication (online): | 2010/03/09 |
Year of first Publication: | 2009 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Granting Institution: | Johann Wolfgang Goethe-Universität |
Date of final exam: | 2009/12/01 |
Release Date: | 2010/03/09 |
Page Number: | 198 |
Note: | Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden. |
HeBIS-PPN: | 421270802 |
Institutes: | Informatik und Mathematik / Informatik |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | Archivex. zur Lesesaalplatznutzung § 52b UrhG |