Performance and storage requirements of topology-conserving maps for robot manipulator control
- A new programming paradigm for the control of a robot manipulator by learning the mapping between the Cartesian space and the joint space (inverse Kinematic) is discussed. It is based on a Neural Network model of optimal mapping between two high-dimensional spaces by Kohonen. This paper describes the approach and presents the optimal mapping, based on the principle of maximal information gain. It is shown that Kohonens mapping in the 2-dimensional case is optimal in this sense. Furthermore, the principal control error made by the learned mapping is evaluated for the example of the commonly used PUMA robot, the trade-off between storage resources and positional error is discussed and an optimal position encoding resolution is proposed.
Author: | Rüdiger W. BrauseGND |
---|---|
URN: | urn:nbn:de:hebis:30-79687 |
ISSN: | 1432-9611 |
Parent Title (German): | Universität Frankfurt am Main. Fachbereich Informatik: Interner Bericht ; 89,5 |
Series (Serial Number): | Interner Bericht / Fachbereich Informatik, Johann Wolfgang Goethe-Universität Frankfurt a.M. (89, 05) |
Document Type: | Working Paper |
Language: | English |
Year of Completion: | 1989 |
Year of first Publication: | 1989 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Release Date: | 2010/09/15 |
GND Keyword: | Roboter; Selbstorganisierende Karte; Speicherbedarf |
HeBIS-PPN: | 228359945 |
Institutes: | Informatik und Mathematik / Informatik |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Sammlungen: | Universitätspublikationen |
Licence (German): | Deutsches Urheberrecht |