Holocene sedimentary development and event sedimentation of a mid-ocean atoll lagoon, Maldives, Indian Ocean

  • This study describes the Holocene sedimentary lagoonal deposition history, including event sedimentation and benthic foraminiferal analyzes, from about 10 kyrs BP until today. This is the first study describing the sedimentation of a Maldivian atoll lagoon in such detail. Thirty-nine sediment cores have been recovered from the deep Rasdhoo Atoll lagoon of the Maldives (4°N/73°W). Seventeen sediment cores were opened, described, and 296 sediment samples have been collected and analyzed. Different methods have been used to evaluate the coarse- and fine-grained carbonate components and a total of fifty-eight samples have been dated radiometrically by Beta Analytic Inc., Miami, Florida. In general, the Rasdhoo Atoll lagoon sediments can be divided into (1) a Late Pleistocene soil, (2) an early Holocene peat layer composed of mangrove deposits which mark the beginning inundation of the atoll lagoon by the rising Holocene sea-level at 10,320 ± 100 yrs BP, and (3) carbonate sediments starting to fill up the lagoon 7850 ± 140 yrs BP until today. The transition from peat to carbonate is characterized by a considerable hiatus. Six different carbonate sediment facies are classified by statistical analyses, listed in decreasing abundance: (1) mollusk-coral-algal floatstone to rudstone (30%) (2) mollusk-coral-red algae rudstone (23%) (3) mollusk-coral-algal wackestone to floatstone (23%) (4) mollusk-coral wackestone (13%) (5) mollusk-coral mudstone to wackestone (9%) (6) mollusk mudstone (2%) Based on grain-sizes in combination with coral identification, the facies represent both lagoonal background sedimentation (mostly fine-grained sediments (matrix >50%)) and event sedimentation (coarse-grained sediment layers composing reefal components). Six coarser grained layers in muddy background sediments of the Rasdhoo Atoll lagoon were interpreted as Holocene tsunami events, based on the increase of allochthonous skeletal material with shallow-water reef affinity such as fragments of shallow-water coral species, coralline red algae, and reef-dwelling foraminifera in these layers, as well as AMS dating: • Event 1: 420 - 890 yrs BP (655 yrs BP) • Event 2: 890 - 1560 yrs BP (1225 yrs BP) • Event 3: 2040 - 2340 yrs BP (2190 yrs BP) • Event 4: 2420 - 3380 yrs BP (2900 yrs BP) • Event 5: 3890 - 4330 yrs BP (4110 yrs BP) • Event 6: 5480 - 5760 yrs BP (5620 yrs BP) Five of the six layers may be correlated to previously published tsunami events at adjacent coastal research sites. The mid-late Holocene atoll lagoon archive is incomplete though based on the assumption that major earthquakes at the Indonesian subduction zone generated more than six major tsunamis during the past 6.5 kyrs. According to Gischler (2006), the sediments of the Rasdhoo Atoll lagoon can be divided into two areas: (1) a central to marginal deep lagoon with a lateral west-to-east gradient of sediment facies distribution, visible in sections <4 kyrs BP with sedimentary facies of mudstone to wackestone in the western part (e.g., cores 16, 18, and 34) and coarse-grained coral and algal-rich sediments in the eastern part of the lagoon (e.g., cores 30 and 31). (2) A northern enclosed and shallow area between the sand apron and the sand spit accumulating “sandy” sediments of wackestone facies (cores 2, 19, 25, and 26). Comparing the sediment accumulation data of the lagoon with two reconstructed local sea-level curves, three different sequence-stratigraphical systems tracts are visible: (1) a lowstand systems tract (LST) >10 kyrs BP. Pleistocene brownish soil superposing subaerially exposed Pleistocene reef limestone. (2) A transgressive systems tract (TST) 10-6.5 kyrs BP. A peat layer marks the beginning of the inundation, and the carbonate sedimentation starts with very low sedimentation rates of 0.02 m/kyr. (3) A highstand systems tract (HST) 6.5-0 kyrs BP, further divided into three stages (6.5-3, 3-1, 1-0 kyrs BP). The sea-level rise slowed down, sedimentation rates are increasing continuously up to a maximum of 1.4 m/kyr, the sand spit developed some 4 kyrs BP, the lagoonal circulation got restricted, and the lateral west-to-east gradient of grain-size accumulation started. From 1-0 kyrs BP the sedimentation rates slowed down to modern mean sedimentation rates of 0.6 m/kyr. Two cores, one core from the center of the lagoon (core 16) and one core from the northern margin of the lagoon (core 19), have been analyzed on diversity and assemblages of benthic foraminifera in high-resolution. The transitions of Ammonia spp. to a more even and diverse fauna marks a significant environmental change at 7.0 kyrs BP in core 16 (onset of a stable environment in the deep lagoon after the sea-level rise slowed down at HST stage 1) and at 4.0 kyrs BP in core 19. A continuing environmental change after 1.4 kyrs BP in core 16 caused the fauna to become more even, a recovery of diversity and a permanent decline of foraminiferal accumulation rate. The changes in the faunas at 4.0 kyrs BP and at 1.4 kyrs BP could be explained with the sand spit formation in the northwestern and western lagoon. The sand spit has apparently acted as an obstacle in lagoonal circulation and might have caused unstable environmental conditions due to a more rapid circulation at the shallow marine site of core 19 and a slowdown of bottom water circulation in the main lagoon (core 16) leading to higher residence times and to lower oxygen and higher nutrient concentrations.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lars KlostermannGND
URN:urn:nbn:de:hebis:30:3-378023
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Eberhard GischlerORCiD, Christian BetzlerORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/07/03
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/05/18
Release Date:2015/07/03
Page Number:160
HeBIS-PPN:361490372
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht