Entwicklung und Test einer supraleitenden 217 MHz CH-Kavität für das Demonstrator-Projekt an der GSI

  • In den letzten Jahrzehnten vergrößerten sich die Anwendungsgebiete von Linearbeschleunigern für Protonen und schwere Ionen, insbesondere im Nieder- und Mittelenergiebereich, stetig. Der überwiegende Teil dieser mittlerweile bewährten Anwendungen lag im Bereich der Synchrotroninjektion oder der Nachbeschleunigung von radioaktiven Ionenstrahlen. Darüber hinaus wird seit einiger Zeit die Entwicklung neuartiger, supraleitender Hochleistungslinearbeschleunigerkavitäten stark vorangetrieben, welche vor allem bei der Forschung an Spallationsneutronenquellen, in der Isotopenproduktion oder bei der Transmutation langlebiger Abfälle aus Spaltreaktoren Anwendung finden sollen. Die am Institut für Angewandte Physik der Goethe-Universität Frankfurt entwickelte CH-Kavität ist optimal für den Einsatz in derartigen Hochleistungsapplikationen geeignet. Sie ist die erste Vielzellenstruktur für den Nieder- und Mittelenergiebereich und kann sowohl normal- als auch supraleitend verwendet werden. Bislang konnten in der Vergangenheit ein supraleitender 360 MHz CH-Prototyp sowie eine für hohe Leistungen optimierte supraleitende 325 MHz CH-Struktur erfolgreich bei kryogenen Temperaturen ohne Strahl getestet werden. Um die Forschung im Bereich der Kernphysik, der Kernchemie und vor allem im Bereich der superschweren Elemente auch in Zukunft weiter fortzusetzen, ist der Bau eines neuen supraleitenden, dauerstrichbetriebenen Linearbeschleunigers an der GSI geplant. Das Kernstück des zukünftigen cw-LINAC basiert auf dem Einsatz supraleitender 217 MHz CH-Kavitäten, mit deren Hilfe ein adäquater Teilchenstrahl mit maximal 7,5 MeV/u für die SHE-Synthese bereitgestellt werden soll. Auf dem Weg zur Realisierung des geplanten cw-LINACs wurde im Zuge des Demonstrator-Projektes die Umsetzung der ersten Sektion des gesamten Beschleunigers beschlossen. Der Fokus des Projektes liegt auf der Demonstration der Betriebstauglichkeit innerhalb einer realistischen Beschleunigerumgebung sowie insbesondere auf der erstmaligen Inbetriebnahme einer supraleitenden CH-Kavität mit Strahl. Im Rahmen der vorliegenden Arbeit wurde die erste supraleitende 217 MHz CH-Kavität für das Demonstrator-Projekt entwickelt, produziert und ihre Hochleistungseigenschaften in einem vertikalen Kryostaten bei 4,2 K getestet. Hierbei lag das Hauptaugenmerk auf der HF-Auslegung der Kavität, den begleitenden Tuningmaßnahmen während der Produktion sowie den ersten Leistungstests unter kryogenen Bedingungen. Weitere Schwerpunkte lagen auf der kompakten Bauweise, dem effektiven Tuning, der Oberflächenpräparation sowie auf dem Strahlbetrieb der Kavität mit einem dauerstrichfähigem 5 kW Hochleistungskoppler. Die Umsetzung der Kavität beruhte auf dem geometrischen Konzept der supraleitenden, siebenzelligen 325 MHz CH-Struktur. Ihre elektromagnetische und strukturmechanische Auslegung erfolgte mittels der Simulationsprogramme ANSYS Multiphysics und CST Studio Suite. Um während des Test- bzw. Strahlbetriebs mit der entsprechend notwendigen Kopplungsstärke die HF-Leistung in die Kavität einzuspeisen, wurden unterschiedliche Kopplerantennen für den jeweiligen Fall ausgelegt. Zum Erreichen der geforderten Zielfrequenz wurde ein Verfahren erarbeitet, welches die hierfür notwendigen Mess- und Arbeitsschritte während der einzelnen Produktionsphasen beinhaltet. Diesbezüglich wurden während der Produktion der Kavität eine Reihe von Zwischenmessungen beim Hersteller durchgeführt, um den Frequenzverlauf innerhalb der jeweiligen Fertigungsschritte entsprechend beeinflussen zu können und um vorangegangene Simulationswerte zu validieren. Alle untersuchten Parameter konnten während der Messungen in guter Übereinstimmung zu den Simulationen reproduziert und die Zielfrequenz der Kavität schließlich erreicht werden. Nach Abschluss der letzten Oberflächenpräparationen wurde die Kavität in einer neuen kryogenen Testumgebung innerhalb der Experimentierhalle des IAP für einen vertikalen Kalttest vorbereitet. Daraufhin erfolgte das Evakuieren der Kavität, das Abkühlen auf 4,2 K sowie ihre Konditionierung. Anschließend erfolgte die Bestimmung der intrinsischen Güte der Kavität. Sie betrug 1,44 x 10E9 und besitzt somit den bisher höchsten Gütewert, der jemals bei einer supraleitenden CH-Struktur erreicht wurde. Es konnte ein maximaler Beschleunigungsgradient von 7 MV/m im Dauerstrichbetrieb erreicht werden, was einer effektiven Spannung von 4,2 MV entspricht. Die zugehörigen magnetischen und elektrischen Oberflächenfelder lagen bei 39,3 mT bzw. 43,5 MV/m. Ein thermaler Zusammenbruch konnte während des gesamten Leistungstests nicht festgestellt werden, was auf eine gute thermische Eigenschaft der Kavität hindeutet. Allerdings zeigte der gemessene Verlauf ein frühes Abfallen der Güte ab 2,5 MV/m, was durch anormale Leistungsverluste aufgrund von Feldemission hervorgerufen wurde. Dies war aufgrund der unzureichenden Oberflächenbehandlung der Kavität zu erwarten, da die Hochdruckspülung aus technischen Gründen nur entlang der Strahlachse erfolgte. Dennoch konnte die Designvorgabe des geplanten cw-LINACs hinsichtlich der Güte bei 5,5 MV/m um einen Faktor 2 übertroffen werden. Die positiven Ergebnisse der Simulationsrechnungen und der Messungen zeigen, dass die Anforderungen des Demonstrator-Projekts, insbesondere hinsichtlich des benötigten Beschleunigungsgradienten, mittels der entwickelten supraleitenden 217 MHz CH-Kavität erfüllt werden. Somit wurde im Rahmen dieser Arbeit maßgeblich an der Umsetzung des Demonstrator-Projekts bzw. an der Realisierung des geplanten cw-LINACs beigetragen und der Weg für einen Strahlbetrieb der Kavität vorbereitet.

Download full text files

Export metadata

Metadaten
Author:Florian DziubaGND
URN:urn:nbn:de:hebis:30:3-414854
Place of publication:Frankfurt am Main
Referee:Holger PodlechORCiDGND, Ulrich RatzingerORCiD
Advisor:Holger Podlech
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2016/09/08
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/08/29
Release Date:2016/09/08
Page Number:176
HeBIS-PPN:386690758
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht