Smac mimetic suppresses tunicamycin-induced apoptosis via resolution of ER stress

  • Since Inhibitor of Apoptosis (IAP) proteins have been implicated in cellular adaptation to endoplasmic reticulum (ER) stress, we investigated the regulation of ER stress-induced apoptosis by small-molecule second mitochondria-derived activator of caspase (Smac) mimetics that antagonize IAP proteins. Here, we discover that Smac mimetic suppresses tunicamycin (TM)-induced apoptosis via resolution of the unfolded protein response (UPR) and ER stress. Smac mimetics such as BV6 selectively inhibit apoptosis triggered by pharmacological or genetic inhibition of protein N-glycosylation using TM or knockdown of DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation. In contrast, BV6 does not rescue cell death induced by other typical ER stressors (i.e., thapsigargin (TG), dithiothreitol, brefeldin A, bortezomib, or 2-deoxyglucose). The protection from TM-triggered apoptosis is found for structurally different Smac mimetics and for genetic knockdown of cellular IAP (cIAP) proteins in several cancer types, underlining the broader relevance. Interestingly, lectin microarray profiling reveals that BV6 counteracts TM-imposed inhibition of protein glycosylation. BV6 consistently abolishes TM-stimulated accumulation of ER stress markers such as glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) and reduces protein kinase RNA-like ER kinase (PERK) phosphorylation and X box-binding protein 1 (XBP1) splicing upon TM treatment. BV6-stimulated activation of nuclear factor-κB (NF-κB) contributes to the resolution of ER stress, since NF-κB inhibition by overexpression of dominant-negative IκBα superrepressor counteracts the suppression of TM-stimulated transcriptional activation of CHOP and GRP78 by BV6. Thus, our study is the first to show that Smac mimetic protects from TM-triggered apoptosis by resolving the UPR and ER stress. This provides new insights into the regulation of cellular stress responses by Smac mimetics.

Download full text files

Export metadata

Metadaten
Author:Behnaz Abhari, Nicole McCarthy, Marie Le Berre, Michelle Kilcoyne, Lokesh Joshi, Patrizia Agostinis, Simone FuldaORCiDGND
URN:urn:nbn:de:hebis:30:3-489941
DOI:https://doi.org/10.1038/s41419-019-1381-z
ISSN:2041-4889
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/30770792
Parent Title (English):Cell death & disease
Publisher:Nature Publishing Group
Place of publication:London [u. a.]
Contributor(s):B. Turk
Document Type:Article
Language:English
Year of Completion:2019
Date of first Publication:2019/02/15
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/03/14
Tag:Cancer therapeutic resistance; Targeted therapies
Volume:10
Issue:3, Art. 155
Page Number:14
First Page:1
Last Page:14
Note:
Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
HeBIS-PPN:448054752
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0