Fixel-based analysis links white matter characteristics, serostatus and clinical features in limbic encephalitis

  • Limbic encephalitis (LE) is an autoimmune syndrome often associated with temporal lobe epilepsy. Recent research suggests that particular structural changes in LE depend on the type of the associated antibody and occur in both mesiotemporal gray matter and white matter regions. However, it remains questionable to what degree conventional diffusion tensor imaging (DTI)-methods reflect alterations in white matter microstructure, since these methods do not account for crossing fibers. To address this methodological shortcoming, we applied fixel-based analysis as a novel technique modeling distinct fiber populations. For our study, 19 patients with LE associated with autoantibodies against glutamic acid decarboxylase 65 (GAD-LE, mean age = 35.9 years, 11 females), 4 patients with LE associated with autoantibodies against leucine-rich glioma-inactivated 1 (LGI1-LE, mean age = 63.3 years, 2 females), 5 patients with LE associated with contactin-associated protein-like 2 (CASPR2, mean age = 57.4, 0 females), 20 age- and gender-matched control patients with hippocampal sclerosis (19 GAD-LE control patients: mean age = 35.1 years, 11 females; 4 LGI1-LE control patients: mean age = 52.6 years, 2 females; 5 CASPR2-LE control patients: mean age = 42.7 years, 0 females; 10 patients are included in more than one group) and 33 age- and gender-matched healthy control subjects (19 GAD-LE healthy controls: mean age = 34.6 years, 11 females; 8 LGI1-LE healthy controls: mean age = 57.0 years, 4 females, 10 CASPR2-LE healthy controls: mean age = 57.2 years, 0 females; 4 subjects are included in more than one group) underwent structural imaging and DTI at 3 T and neuropsychological testing. Patient images were oriented according to lateralization in EEG resulting in an affected and unaffected hemisphere. Fixel-based metrics fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC = FD · FC) were calculated to retrieve information about white matter integrity both on the micro- and the macroscale. As compared to healthy controls, patients with GAD-LE showed significantly (family-wise error-corrected, p < 0.05) lower FDC in the superior longitudinal fascicle bilaterally and in the isthmus of the corpus callosum. In CASPR2-LE, lower FDC in the superior longitudinal fascicle was only present in the affected hemisphere. In LGI1-LE, we did not find any white matter alteration of the superior longitudinal fascicle. In an explorative tract-based correlation analysis within the GAD-LE group, only a correlation between the left/right ratio of FC values of the superior longitudinal fascicle and verbal memory performance (R = 0.64, Holm-Bonferroni corrected p < 0.048) remained significant after correcting for multiple comparisons. Our results underscore the concept of LE as a disease comprising a broad and heterogeneous group of entities and contribute novel aspects to the pathomechanistic understanding of this disease that may strengthen the role of MRI in the diagnosis of LE.
Author:Tobias Bauer, Leon Ernst, Bastian DavidORCiDGND, Albert J. BeckerORCiD, Jan WagnerORCiD, Juri-Alexander WittORCiD, Christoph HelmstaedterORCiD, Bernd WeberORCiDGND, Elke HattingenORCiDGND, Christian Erich ElgerORCiDGND, Rainer SurgesORCiDGND, Theodor RüberORCiDGND
Pubmed Id:
Parent Title (English):NeuroImage: Clinical
Place of publication:[Amsterdam u. a.]
Document Type:Article
Year of Completion:2020
Date of first Publication:2020/05/26
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2020/07/27
Issue:Art. 102289
Page Number:8
First Page:1
Last Page:8
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCreative Commons - Namensnennung-Nicht kommerziell - Keine Bearbeitung 4.0