Fluorescent reporters, calibration standards and endogenous protein labeling for quantitative single-molecule localization microscopy in cells

  • Die Kommunikation von Zellen mit ihrer Umgebung wird durch Rezeptorproteine arrangiert, die sich in der Plasmamembran befinden. Membranrezeptoren werden durch die Bindung von extrazellulären Liganden, Pathogenen oder Zell-Zell-Interaktionen aktiviert, wodurch die Bildung eines aktiven Zustands gefördert wird, der eine intrazelluläre Reaktion einleitet. Eine Beschreibung auf molekularer Ebene, wie sich Membranrezeptoren in Proteinanordnungen organisieren und wie diese Proteinanordnungen eine spezifische funktionelle Aufgabe ausführen, ist der Ausgangspunkt für das Verständnis der molekularen Mechanismen, die Gesundheit und Krankheit zugrunde liegen. Die Fluoreszenzmikroskopie gibt Aufschluss über die Lage von Proteinen in Zellen, und mit der Einführung der höchstauflösenden Mikroskopie wurde der Nachweis einzelner Proteingruppierungen möglich. Eine Einschränkung der meisten Methoden der höchstauflösenden Mikroskopie ist, dass einzelne Komponenten einer Proteingruppierung optisch nicht aufgelöst werden können, was an der geringen Größe und dichten Packung der Bestandteile im Vergleich zur erreichbaren räumlichen Auflösung liegt. Eine Lösung, die für Einzelmolekül-Lokalisierungsmethoden gezeigt wurde, besteht darin, zusätzliche experimentelle Informationen in die Analyse zu implementieren, also „die Aufl sungsgrenze der höchstauflösenden Mikroskopie zu umgehen". Bei der Einzelmolekül-Bildgebung kann diese zusätzliche Information zum Beispiel die Kinetik von mehrfachen und wiederkehrenden Emissionsereignissen sein, die bei einzelnen Fluorophoren beobachtet werden, was als "Blinken" bezeichnet wird. Das Ziel dieser Arbeit war die Entwicklung einer höchstauflösenden Fluoreszenzmikroskopiemethode zur Detektion von Proteinmonomeren und -dimeren in der Plasmamembran von Zellen durch die Verwendung der kinetischen Information. Im ersten Teil dieser Arbeit wurden photoschaltbare fluoreszierende Proteine als Reporter verwendet, deren photoschaltbare Kinetik mit kinetischen Gleichungen analysiert wurden. Synthetische, genetische und zelluläre Referenzproteine wurden konstruiert und dienten als Kalibrierungsreferenzen für monomere und dimere Proteine. Im zweiten Teil dieser Arbeit wurde das kinetische Modell, das zur Annäherung des Häufigkeitshistogramms von Blinkereignissen einzelner Fluorophore verwendet wird, auf Oligomere höherer Ordnung erweitert. Ein Vergleich mit einem zuvor entwickelten Modell zeigte, dass das erweiterte Modell genauere Ergebnisse für Oligomere höherer Ordnung und Mischungen verschiedener Oligomere liefert. Zusätzlich wird die Anwesenheit von unerkannten Oligomeren berücksichtigt. Die erweiterte Theorie bietet somit die Grundlage, um größere Oligomere und Mischungen unterschiedlicher Stöchiometrie mit besserer Genauigkeit zu untersuchen. Im dritten Teil dieser Arbeit wurde eine Methode zur stöchiometrischen endogenen Markierung von Proteinen verwendet, um zwei Rezeptortyrosinkinasen, MET und EGFR, mit einem photoschaltbaren fluoreszierenden Protein zu markieren. Das Vorkommen von monomerem und dimerem MET-Rezeptor wurde auf der Plasmamembran von HEK293T- Zellen mittels quantitativer höchstauflösender Mikroskopie bestimmt. Der Diffusionskoeffizient und der Diffusionsmodus des MET-Rezeptors in lebenden HEK293T-Zellen wurden mit Einzelpartikelverfolgung gemessen. Dieser Teil der Arbeit zeigte, dass die Kombination von CRISPR/Cas12a-gestützter endogener Markierung und Einzelmolekül-Lokalisierungsmikroskopie ein leistungsfähiges Werkzeug zur Untersuchung der molekularen Organisation und Dynamik von Membranproteinen ist. Im vierten Teil dieser Arbeit wurde die Einzelmoleküldatenanalyse durch ein Softwaretool beschleunigt, das eine automatisierte und unvoreingenommene Detektion von Einzelmolekül-Emissionsereignissen ermöglicht. Der Anteil von Monomeren und Dimeren von fluoreszierenden Reportern wurde durch die Implementierung eines neuronalen Netzwerks bestimmt (die Software wurde von Alon Saguy geschrieben; Gruppe von Prof. Yoav Shechtman, Technion, Israel). Der oligomere Zustand der monomeren und dimeren Referenzproteine CD86 und CTLA-4 wurde erfolgreich bestimmt. Die automatisierte Detektion einzelner Proteingruppierungen ermöglichte die Analyse von MET-mEos4b in einzelnen Zellen, wodurch die Heterogenität zwischen den Zellen bestimmt und das Expressionsniveau des Rezeptors mit der Dimerisierung korreliert werden konnte. Zusammenfassend wurden in dieser Arbeit Ergebnisse zu elementaren Aspekten hin zu einer molekularen Quantifizierung von Proteinzahlen mittels Einzelmolekül- Lokalisationsmikroskopie generiert, die fluoreszierende Reporter, stöchiometrische Markierung von zellulären Proteinen und Bildanalyse umfassen. Das Potential dieser Entwicklungen wurde anhand der Beobachtung der Liganden-induzierten Verschiebung von monomeren zu dimeren MET-Rezeptoren in einzelnen HEK293T-Zellen gezeigt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tim Niklas Baldering
URN:urn:nbn:de:hebis:30:3-611787
DOI:https://doi.org/10.21248/gups.61178
Place of publication:Frankfurt am Main
Referee:Mike HeilemannORCiDGND, Gerhard HummerORCiD
Advisor:Mike Heilemann
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/06/10
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/05/31
Release Date:2021/09/23
Page Number:147
HeBIS-PPN:485730103
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht