Europium based valence fluctuating systems with ThCr2Si2 structure type

  • This work ties in with the investigation of the intermediate valent states and valence fluctuations in certain europium based intermetallic systems. Valence fluctuations are a property of the electronic system of a compound that is possibly accompanied by structural effects, which, in some cases, are quite noticable. By assuming how the changes in the electronic system and in the crystal lattice are connected, valence _uctuations of europium are believed to be a possible probe for the theory of quantum critical elasticity, which is investigated on by the SFB TRR 288 (Frankfurt, Mainz, Karlsruhe, Bochum, Dresden). Here, the proceedings in growing single crystals of di_erent compounds related to this _eld of research are reported. This includes the ThCr2Si2 (122) type compounds EuPd2Si2 as well as the doping series EuPd2(Si1-xGex)2, the Europium based ternary Phosphides EuFe2P2, EuCo2P2, EuNi2P2 and EuRu2P2, and attempts to grow compounds of a derived 1144 structure by ordered substitution of half the Europium, EuKRu4P4. The largest part of this work focusses on the EuPd2Si2 system, which exhibits intermediate valent europium and a temperature dependent transition between two di_erent intermediate valent states of europium. Crystals of this system were grown using the Czochralski method with a levitating melt and an europium excess flux after a two step prereaction process. Also, explorations of a PdSi-rich flux and external flux methods are reported. Ten Czochralski grown experiments, in six generations iteratevely seeded by the previous generation, were prepared. Thermodynamical and structural analyses of the crystals located the transition between the di_erent intermediate valent states of europium between 140K and 165 K, transitioning from a high temperature Eu2.3+ state to a low temperature Eu2.7+ state, and classified it as a second order transition. To this transition a lattice anomaly of the a-parameter collapsing about 2% is connected, while the c-parameter remains largely unaffected. Large differences between individual samples can be explained by combining thermodynamical and structural analyses with compositional analysis, revealing the valence transition temperature as strongly dependent on the sample composition and Pd-Si site interchanges. Searching to change the character of the valence transition to first order, silicon was substituted by germanium to introduce negative pressure. Germanium substituted samples of EuPd2(Si1-xGex)2 were grown using the Czochralski method with the optimized parameters from the growth experiments for the undoped compound. Samples were prepared with a nominal substitution of x = 0.05, x = 0.10, x = 0.15, x = 0.20 (twice) and x = 0.30. For the EuPd2(Si1-xGex)2 system, a phase diagram for the europium valence states is derived from chemical and thermodynamical characterizations. n ternary europium phosphides EuT2P2, the position of the compounds in the generalized phase diagram and the question of long range magnetic order or valence transition appear connected to an isostructural transition of the tetragonal crystal structure, drastically decreasing the length of the c-parameter while establishing covalent bonds between phosphorus atoms of different interlayers of the structure, the so called ‚collapse‘. While EuFe2P2, EuT2P2 and EuCo2P2 display both long range magnetic order and a non-collapsed crystal structure, EuNi2P2 shows both a valence transition between two intermediate valent states at a characteristic temperature of 36K - accompanied by a small lattice anomaly of the a-parameter shrinking about 0.2% - and a collapsed crystal structure. Samples of EuFe2P2, EuCo2P2 and EuNi2P2 were grown in tin flux and using solid-solid sintering approaches. Single crystals of EuFe2P2, EuCo2P2 and EuRu2P2 were investigated at ESRF in Grenoble with single crystal X-ray di_ractometry on a pressure range up to 15GPa and at temperatures down to 15K to investigate the nature of the structural transitions in the compounds. While in EuCo2P2 the structural transition occurs as a transition of first order at all temperatures (e.g. at 2GPa for 15 K), in EuFe2P2 and EuRu2P2 the structural collapse evolves over a broad pressure range up to 8GPa and as a transition of second order troughout the temperature ranges, albeit seeming to sharpen at lower temperatures. From the crystallographic data, elastic constants of the compounds could be derived, revealing EuFe2P2 and EuRu2P2 as unexpectedly elastic materials. In order to probe the structural collapse at more accessible pressures, crystals with a sturcture derived from the 122 structure, but with ordered 50% substitution of europium and hence altering the symmetry from I4/mmm to P4/mmm in a 1144 structure, were exploratively pursued. Different experiments to obtain EuAT4P4 (with A = K, Rb, Cs and T = Fe, Ru) from binary or ternary prereactants or directly from the elements remained largely unsuccessful.

Download full text files

Export metadata

Metadaten
Author:Marius PetersGND
URN:urn:nbn:de:hebis:30:3-686478
DOI:https://doi.org/10.21248/gups.68647
Place of publication:Frankfurt am Main
Referee:Cornelius KrellnerORCiDGND, Michael Lang
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2023/02/07
Year of first Publication:2022
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/06/08
Release Date:2023/02/14
Page Number:215
HeBIS-PPN:504382624
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht