• Treffer 10 von 11
Zurück zur Trefferliste

Backup flexibility classes in emerging large-scale renewable electricity systems

  • High shares of intermittent renewable power generation in a European electricity system will require flexible backup power generation on the dominant diurnal, synoptic, and seasonal weather timescales. The same three timescales are already covered by today’s dispatchable electricity generation facilities, which are able to follow the typical load variations on the intra-day, intra-week, and seasonal timescales. This work aims to quantify the changing demand for those three backup flexibility classes in emerging large-scale electricity systems, as they transform from low to high shares of variable renewable power generation. A weather-driven modelling is used, which aggregates eight years of wind and solar power generation data as well as load data over Germany and Europe, and splits the backup system required to cover the residual load into three flexibility classes distinguished by their respective maximum rates of change of power output. This modelling shows that the slowly flexible backup system is dominant at low renewable shares, but its optimized capacity decreases and drops close to zero once the average renewable power generation exceeds 50% of the mean load. The medium flexible backup capacities increase for modest renewable shares, peak at around a 40% renewable share, and then continuously decrease to almost zero once the average renewable power generation becomes larger than 100% of the mean load. The dispatch capacity of the highly flexible backup system becomes dominant for renewable shares beyond 50%, and reach their maximum around a 70% renewable share. For renewable shares above 70% the highly flexible backup capacity in Germany remains at its maximum, whereas it decreases again for Europe. This indicates that for highly renewable large-scale electricity systems the total required backup capacity can only be reduced if countries share their excess generation and backup power.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:David Peter SchlachtbergerORCiDGND, Sarah BeckerGND, Stefan SchrammGND, Martin GreinerORCiDGND
URN:urn:nbn:de:hebis:30:3-772402
DOI:https://doi.org/10.1016/j.enconman.2016.04.020
ISSN:0196-8904
Titel des übergeordneten Werkes (Englisch):Energy Conversion and Management
Verlag:Elsevier
Verlagsort:Amsterdam
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Veröffentlichung (online):16.09.2016
Datum der Erstveröffentlichung:12.04.2016
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Datum der Freischaltung:31.01.2024
Freies Schlagwort / Tag:Energy system design; Flexible backup power; Large-scale integration of renewable power generation; Solar power; Wind power
Jahrgang:125
Seitenzahl:11
Erste Seite:336
Letzte Seite:346
HeBIS-PPN:519157311
Institute:Physik
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International