• search hit 5 of 36
Back to Result List

Role of gephyrin and collybistin in inhibitory synapse formation and maintenance

  • An chemischen Synapsen diffundieren von der präsynaptischen Nervenendigung ausgeschüttete Neurotransmitter durch den synaptischen Spalt und aktivieren Rezeptormoleküle in der postsynaptischen Plasmamembran. Eine schnelle und zuverlässige Kommunikation an Synapsen bedingt, dass die Rezeptoren in Clustern direkt gegenüber den aktiven Zonen der Präsynapsen angereichert sind. Eine hohe Rezeptorendichte in der postsynaptischen Membran wird durch sog. Gerüstproteine, die mit den Rezeptormolekülen assoziieren, erreicht. Bisher wurden für verschiedene Synapsen unterschiedliche Gerüstproteine identifiziert. An glutamatergen Synapsen werden Rezeptoren durch u.a. das Postsynaptic Density 95 (PSD 95)-Protein, an cholinergen Synapsen durch Rapsyn, und an GABAergen und glyzinergen Synapsen durch Gephyrin verankert. An inhibitorischen Synapsen wurde bisher ausschliesslich Gephyrin als Ankerprotein für Glyzin- und GABAARezeptoren identifiziert. An exzitatorischen glutamatergen Synapsen dagegen regulieren weitere Gerüstproteine wie Shank, Homer und das Glutamatrezeptor interagierende Protein (GRIP) die Lokalisation, den Transport und die Stabilität verschiedener Glutamatrezeptor- Subtypen. Gephyrin wurde ursprünglich als peripheres Membranprotein zusammen mit dem Glyzin-rezeptorkomplex aufgereinigt. Es bindet an die große intrazelluläre Schleife der ß-Untereinheit des Glyzinrezeptors. Experimente mit Antisense-Oligonukleotiden und Gephyrin-defizienten Mäusen zeigten, dass Gephyrin essentiell für die synaptische Lokalisation von Glyzinrezeptoren und α2- und γ2-Untereinheiten enthaltenden GABAARezeptoren ist. Die Rezeptorlokalisation an der Synapse wird durch eine stabile Verankerung des Gephyrin-Gerüstes am Zytoskelett gewährleistet. Die Gerüstbildung erfolgt durch die Oligomerisierung zweier Gephyrin-Domänen, der aminoterminalen G-Domäne und der carboxyterminalen E-Domäne, wodurch ein hexagonales Gephyrinnetzwerk entsteht, welches für die Clusterbildung an der Synapse notwendig ist. Live-imaging Studien in Neuronenkulturen zeigten, daß an Rezeptor-Transportvesikel gebundenes Gephyrin kontinuierlich an und von aktiven Synapsen weg transportiert wird, was eine hochdynamische Modulation des Gephyrin-Gerüsts nahelegt. Der retro- und anterograde Transport von Gephyrin wird durch Dynein bzw. Kinesin bewerkstelligt. Einige zytosolische Proteine wie Profilin, das Mena/Vasodilator-stimulierte Phosphoprotein (VASP) und Collybistin (Cb) spielen in der Zytoskelett-Regulation eine Rolle und interagieren mit Gephyrin. Cb ist notwendig für die Gephyrin-Clusterbildung an bestimmten GABAergen Synapsen. Im Hippocampus Cb-defizienter Mäuse befindet sich kein Gephyrin an den Postsynapsen. Cb gehört zur Familie der Guanin-Nukleotid-Austauschfaktoren (GEF), die durch eine DH-PH (Dbl Homologie-/Pleckstrin-Homologie) Tandem-Domäne charakterisiert sind und existiert in zwei Spleißvarianten, CbI und CbII. Die DH-Domäne aktiviert spezifisch das kleine G-Protein Cdc42, und die PH-Domäne interagiert mit Phosphoinositol-3-Phosphat (PI3P). In vitro-Studien haben gezeigt, dass die Interaktion von Gephyrin mit Cb II eine Reduktion der GEF-Aktivität für Cdc42 bewirkt. Basierend auf diesen Resultaten wurde vorgeschlagen, dass Gephyrin die Cdc42-Aktivierung durch Cb beendet. Dieser Mechanismus könnte für die initiale Bildung inhibitorischer Synapsen notwendig sein. Analysen mit Domänen-deletierten Cb-Konstrukten zeigten, dass sowohl die DH- als auch die PH-Domäne für die Bildung von submembranären Gephyrin-Microclustern an der Plasmamembran notwendig sind. In dieser Arbeit wurde der Mechanismus der Gephyrin-Gerüstbildung durch Cb weiter untersucht. Insbesondere wurde geklärt, inwiefern Cdc42-Aktivierung bzw. PI3P-Bindung durch Cb an der Gephyrin-Gerüstbildung beteiligt ist. Zusätzlich wurde anhand einer eigens erzeugten GFP-Gephyrin transgenen Maus untersucht, ob sich die Stabilität des Gephyrin-Gerüsts während der Differenzierung ändert und in die Regulation der Stabilität und Plastizität inhibitorischer Synapsen involviert ist. Die Rolle von Cdc42 in der Gephyrin-Gerüstbildung wurde mittels einer konstitutiv aktiven Spleißvariante von Cb untersucht. Basierend auf Homologien zu anderen bereits charakterisierten GEFs und der publizierten Kristallstruktur des CbII-Cdc42 Komplexes wurden Aminosäurereste in der DH-Domäne von Cb mutiert, um die Cdc42-Aktivierung zu unterbrechen (CB T61A, K192A und NE232-233AA). In vitro GTPase-Aktivierungsassays und Filopodien-Induzierung in NIH-3T3-Zellen bestätigten, dass diese Mutationen die Cdc42-Aktivierung reduzierten bzw. aufhoben. Dennoch induzierten sie die Gephyrin-Gerüstbildung in heterologen Zellen und hippocampalen Neuronen ähnlich effektiv wie Wildtyp-Cb II. Die Rolle von Cdc42 in der synaptischen Gephyrin-Clusterbildung wurde außerdem in konditionell Cdc42-defizienten Mäusen, in denen das Cdc42-Gen selektiv im Vorderhin inaktiviert wurde, untersucht. Die Dichte von Gephyrin- und das GABAA-Rezeptor-Clustern war bei Verlust von Cdc42 im Hippocampus nicht verändert. Dies steht im Gegensatz zu einem fast 80%igen Verlust von Gephyrin- und GABAA-Rezeptor-Clustern im Hippocampus von Cb-defizienten Mäusen. Diese Ergebnisse zeigen, dass Cdc42 für die Gephyrin-Gerüstbildung an inhibitorischen Synapsen nicht notwendig ist. Die Rolle der PH-Domäne von Cb bei der Gephyrin-Clusterbildung wurde ebenfalls durch Mutagenese-Experimente analysiert. Viele PH-Domänen haben die Fähigkeit, Phosphoinositide zu binden und damit Membranbindung zu vermitteln, während andere PHDomänen, die nicht an Phosphoinositide binden, nur nach Bindung weiterer Liganden mit Membranen assozieren. In früheren Arbeiten war gezeigt worden, dass humanes Cb PI3P bindet. Hier wurde eine mögliche Beteiligung von Phospholipid-Bindung an der Gephyrin-Gerüstbildung durch Substitution zweier basischer Reste in der β3- und β4- Schleife, R303 und R304, mit Asparaginen untersucht. Ein Lipid-Dot-Blot-Assay mit der Cb II-RR303-304NN-Mutante zeigte einen völligen Verlust der PI3P-Bindung in vitro. Die Expression dieser Mutante in heterologen Zellen und hippocampalen Neuronen zeigte, dass die Gerüstbildung und die synaptische Lokalisation von Gephyrin Phosphoinositidbindung erfordern. Zusammenfassend zeigen diese Ergebnisse, dass die Aktivierung von Cdc42, nicht aber die PI3P- Bindung, für die Cb II-vermittelte Gephyrin-Gerüstbildung entbehrlich ist. Cb hat also zumindest zwei biologische Funktionen: Einerseits ist die DH-Domänen vermittelte Aktivierung von Cdc42 notwendig für die Regulation des Aktinzytoskeletts und die Bildung von Filopodien; andererseits wird die PH-Domänen-abhängige und Cdc42-unabhängige Phospholipidbindung für die Gephyrin-Gerüstbildung an inhibitorischen Postsynapsen benötigt. Um die Dynamik von Gephyrin an inhibitorischen Synapsen zu untersuchen, wurde eine transgene Maus entwickelt, welche GFP-Gephyrin unter der Kontrolle des Neuronspezifischen Thy1-Promotors exprimiert. In verschiedenen Hirnregionen der transgenen Mauslinie, wie Hippocampus, Stammhirn, Rückenmark und Kortex, wurde punktuelle synaptische GFP- Fluoreszenz beobachtet. Diese GFP-Gephyrin-Fluoreszenz kolokalisierte mit einem inhibitorischen Präsynapsenmarker, dem vesikulären inhibitorischen Aminosäuretransporter (VIAAT). Immunfärbungen von Hirnschnitten mit Gephyrin-spezifischen Antikörpern zeigten, daß die durchschnittliche Größe und Dichte der GFP-Gephyrin-Cluster mit denen endogener Gephyrin-Cluster identisch waren. Eine Western-Blot Analyse inhibitorischer synaptischer Proteine zeigte keinen Unterschied zwischen Thy1-GFP-Gephyrin- und Wildtyp-Mäusen auf, ebensowenig wie elektrophysiologische Untersuchungen von GFP-Gephyrin-positiven und -negativen Neuronen. Sowohl die durchschnittliche Amplitude der mIPSCs als auch deren Frequenz waren nicht signifikant verändert, was dafür spricht, dass die transgene Expression von GFP- Gephyrin keine funktionellen Veränderungen verursacht. Verhaltensversuche zeigten gleiche Ergebnisse für Thy1-GFP-Gephyrin und WTMäuse. Daher kann die GFP-Gephyrin-Maus als verlässliche Reporterlinie für Studien zur Gephyrin-Dynamik an inhibitorischen Synapsen im Hippocampus und in einigen anderen Hirnregionen eingesetzt werden. Die Dynamik des synaptischen Gephyrin-Gerüsts wurde an inhibitorischen Postsynapsen in organotypischen entorhinal-hippocampalen Schnittkulturen aus GFPGephyrin-Mäusen untersucht. Fluorescence Recovery after Photobleaching (FRAP)-Analysen individueller GFP-Gephyrin-Cluster in 1-Woche- und 4-Wochen-alten Kulturen zeigten eine entwicklungsabhängige Stabilisierung der GFP-Gephyrin-Cluster auf. Diese Stabilisierung ist eng verbunden mit einer Größenzunahme der Gephyrin-Cluster an GABAergen Synapsen. Mit elektrophysiologischen Ableitungen wurde eine Reifung der GABAergen synaptischen Übertragung ebenfalls während dieser Periode beobachtet. Die Stabilisierung und Grössenzunahme des Gephyrin-Gerüsts spiegelte sich in einer erhöhten miniature inhibitory postsynaptic current (mIPSC)- Amplitude wieder. Außerdem wies die Zunahme der mIPSCFrequenz auf eine effiziente Reifung der präsynaptischen Endigungen hin, die immunhistochemisch durch eine Zunahme der VIAAT-Immunfluoreszenz erhärtet werden konnte. Ein möglicher Einfluss der GABAergen, synaptischen Aktivität auf die Grösse und Stabilität der Gephyrin-Cluster wurde in reifen Neuronenkulturen durch pharmakologische Modulation der GABAA-Rezeptoren untersucht. Die Behandlung 4-Wochen-alter Kulturen mit GABAA-Rezeptor-Antagonisten und mit dem potenzierenden Benzodiazepin Diazepam zeigte eine homöostatische Regulation der Stabilität und Größe des Gephyrin-Gerüsts durch die Aktivität inhibitorischer Synapsen auf. Zusammenfassend sind diese Resultate starke Hinweise für dynamische Veränderungen in synaptischen Gephyrin-Gerüsten während der Reifung und Aktivitäts-induzierten Plastizität GABAerger Synapsen
  • The dense packing of neurotransmitter receptors in the postsynaptic plasma membrane is essential for efficient synaptic transmission between neurons. It requires specific scaffolding and adaptor proteins that have been shown to be crucial for the synaptic accumulation and dynamic regulation of distinct receptor subtypes. At inhibitory synapses, the membrane-associated protein gephyrin is highly enriched at the cytoplasmic side of the postsynaptic membrane. Antisense oligonucleotide down-regulation experiments and studies on gephyrin knockout mice have shown that gephyrin is essential for the synaptic clustering of both glycine and GABAA receptors. Based on the oligomerization properties of its aminoterminal G-domain and carboxyterminal E-domain, gephyrin is thought to form a hexagonal lattice beneath the plasma membrane, onto which receptor molecules are anchored. The gephyrin lattice is connected to the underlying cytoskeleton and a prerequisite for inhibitory synapse formation. In this thesis, the mechanism of gephyrin recruitment to synaptic sites by the interacting protein collybistin (Cb) was investigated. In addition, the stability of the synaptic gephyrin scaffold was analysed at young and mature synapses. Furthermore, we examined whether modulation of the gephyrin scaffold may contribute to the regulation of synaptic strength and plasticity. At central GABAergic synapses, the formation and maintenance of gephyrin clusters requires the gephyrin interacting protein, Cb. In conventional and conditional Cb knockout mice, gephyrin is lost from inhibitory postsynaptic sites in the hippocampus. As Cb is a guanine nucleotide exchange factor (GEF) specific for the small GTPase Cdc42, the activation of Cdc42 has been implicated in the Cb-dependent clustering of gephyrin at GABAergic synapses. Here, the role of Cdc42 in gephyrin clustering was investigated by generating mutations in the Dbl homology domain (DH-domain) of Cb (Cb T61A, K192A and NE232-233AA). In vitro GTPase activation assays and filopodia induction in NIH-3T3 cells confirmed that these mutations strikingly reduced or totally ablated Cdc42 activation. Nonetheless the mutant Cb proteins effectively induced gephyrin cluster formation in both heterologous cells and hippocampal neurons. Furthermore, in conditional Cdc42 knockout mice the synaptic localization of gephyrin was unaltered. In contrast, a double mutation in the pleckstrin homology domain (PH-domain) that abolished phosphoinositide binding as monitored by overlay assays for phosphatidylinositol 3 phosphate (PI3P) binding, (Cb RR303-304NN), interfered with the clustering and synaptic targeting of gephyrin. Together these results indicate that PI3P binding to the PH-domain but not Cdc42 activation by the DH-domain is important for gephyrin scaffold formation at GABAergic synapses. The dynamics of the postsynaptic gephyrin scaffold at inhibitory postsynapses were investigated in organotypic entorhinal-hippocampal slice cultures prepared from a newly generated mouse line, which expresses green fluorescent protein-tagged gephyrin (GFPgephyrin) under the control of the neuron-specific Thy1 promoter. Fluorescence recovery after photobleaching (FRAP) analysis on individual GFP-gephyrin clusters in 1-week and 4-week old cultures disclosed a developmental stabilization of gephyrin scaffolds. This stabilization was closely associated with increases in gephyrin cluster size and a stricking enhancement of GABAergic synaptic transmission between week 1 and week 4 of in vitro development as reflected by increased miniature inhibitory postsynaptic currents (mIPSC) amplitudes and frequencies. Simultaneously, efficient presynaptic maturation also occured as indicated by an increase in immunolabeling for the vesicular inhibitory amino acid transporter (VIAAT). The influence of GABAergic synaptic activity on the stability of the gephyrin scaffold was examined in mature cultures by pharmacological modulation of GABAA receptors. Treatment of 4 week-old cultures with a GABAA receptor antagonist and the potentiating diazepam revealed a homeostatic regulation of gephyrin cluster stability and size by inhibitory synaptic activity. Thus, postsynaptic gephyrin scaffolds exhibit dynamic changes during the developmental maturation and activity-induced plasticity of GABAergic synapses.

Download full text files

  • Suneel_Reddy_Alla_PhD_Thesis_2010.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Suneel Reddy Alla
URN:urn:nbn:de:hebis:30-93916
Referee:Ernst BambergGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2011/03/22
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/07/05
Release Date:2011/03/22
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:425154076
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG