Endliche Überlagerungen von Varietäten und der Satz von Belyi

  • In der vorliegenden Arbeit beschäftigen wir uns mit der Verallgemeinerung des Satzes von Belyi [B]. Dieser besagt, dass eine Riemannsche Fläche Y genau dann als algebraische Kurve über einem Zahlkörper definiert ist, wenn es auf Y eine nicht-konstante holomorphe Funktion gibt, die über höchstens drei Punkten verzweigt. Die Arbeit gliedert sich in zwei Teile. Wir untersuchen darin jeweils die Verallgemeinerung einer der beiden Implikationen aus dem Satz von Belyi auf Varietäten der Dimension zwei und höher. Im ersten Teil der Arbeit zeigen wir, dass eine n-dimensionale projektive komplex algebraische Varietät über einem Zahlkörper definiert ist, falls sie den Pn (oder eine beliebige projektive über Q definierte Varietät) endlich und höchstens über einem rationalen Divisor verzweigt überlagert. Dazu beschreiben wir im ersten Kapitel den Zusammenhang zwischen Varietäten und komplex analytischen Räumen. Wir zeigen, dass die Kategorie der endlichen algebraischen Überlagerungen einer projektiven komplexen Varietät äquivalent zur Kategorie der endlichen verzweigten analytischen Überlagerungen des assoziierten komplex analytischen Raumes ist. Außerdem erläutern wir den Zusammenhang zwischen topologisch unverzweigten Überlagerungen und deren Algebraisierung, den étalen Morphismen zwischen Varietäten. Im zweiten Kapitel führen wir Definitionskörper und Modulkörper von Varietäten ein. Anschließend untersuchen wir die Operation von Körperautomorphismen s E Aut (C/Q) auf komplexen Varietäten. Im dritten Kapitel zeigen wir zunächst, dass der Modulkörper einer endlichen Überlagerung eines geeigneten Grundraumes ein Zahlkörper ist. Danach stellen wir das Resultat von Derome [D] vor, nachdem es einen Definitionskörper im algebraischen Abschluss des Modulkörpers gibt. Daraus folgern wir die Verallgemeinerung dieser Richtung des Satzes von Belyi. Im zweiten Teil beschäftigen wir uns mit der Frage, wie der Verzweigungsdivisor D im Pn aussehen sollte, damit jede über Q definierte Varietät ein Modell besitzt, dass Pn endlich und nur über D verzweigt überlagert. Im vierten Kapitel stellen eine Heuristik zur Korrespondenz zwischen topologischen Überlagerungen und Körpererweiterungen von Q vor. Daraus leitet sich folgende Vermutung ab: Zu jeder über einem Zahlkörper definierten n-dimensionalen Varietät Y gibt es eine birational äquivalente normale Varietät Y und einen Morphismus f : Y -> Pn, der nur über dem Komplement von M0,n+3 verzweigt. Die Vermutung steht im Einklang mit dem eindimensionalen Satz von Belyi. Alle Modulräume erfüllen die Voraussetzung für die im dritten Kapitel bewiesene Umkehrung. Im letzten Kapitel beschäftigen wir uns mit komplex algebraischen Flächen. Wir zeigen, dass die Vermutung aus dem vierten Kapitel für abelsche Flächen richtig ist. Dieses Ergebnis haben wir gemeinsam mit Horst Hammer (Karlsruhe) erzielt. Anschließend geben wir einen Überblick über weitere Resultate in dieser Richtung. Schließlich beschreiben wir die topologischen Überlagerungen von M0,5 und stellen eine Verallgemeinerung der Dessins d'Enfants vor.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andreas Weng
URN:urn:nbn:de:hebis:30-0000004474
Referee:Jürgen Wolfart
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/09/01
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/05/19
Release Date:2004/09/01
HeBIS-PPN:123400686
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht