Entwicklung neuer retroviraler Vektoren für die Gentherapie der HIV-Infektion

  • An den Folgen der HIV-Infektion sind bisher mehr als 15 Millionen Menschen gestorben und die Zahl der Neuinfektionen wächst ständig. Nach Einführung der hochaktiven antiretroviralen Kombinationstherapie (HAART) 1995 konnte die HIV-Replikation im Patienten unterdrückt und der Verlauf der Krankheit verzögert werden. Aber die Bildung resistenter HIV-Stämme während der Therapie und die hohe Toxizität der Medikamente limitieren diese Erfolge. Einen neuen Therapieansatz bietet die genetische Modifikation von T-Lymphozyten zur "intrazellulären Immunisierung" der Zielzellen von HIV. Dabei werden die Zellen mit einem retroviralen Vektor transduziert und exprimieren ein antivirales Gen, das sie vor der HIV-Infektion schützt. In Vorarbeiten der Arbeitsgruppe von Laer wurde der retrovirale Vektor M87- Ineo entwickelt, der die Expression des membranverankerten Fusionsinhibitors C36/T20 auf der Zelloberfläche ermöglicht. Durch das Peptid sind die Zielzellen effizient vor der Infektion mit HIV geschützt (Hildinger et al., 2001). Das therapeutische Gen von M87-Ineo besteht aus dem Signalpeptid von LNGFR für die Translokation in das ER, dem inhibitorischen Peptid C36/T20, das von HIV-1 gp41 abgleitet ist, einem flexiblen Linker sowie aus der Transmembrandomäne von LNGFR für die Verankerung in der Plasmamembran. In der vorliegenden Arbeit wurde dieser retrovirale Vektor erfolgreich für die klinische Applikation zur Gentherapie der HIV-Infektion optimiert. Ziel war es, die potentielle Immunogenität des exprimierten Peptides zu minimieren, die Expression zu erhöhen sowie der Resistenzbildung entgegenzuwirken. Der Linker im Basiskonstrukt M87-Ineo ist abgeleitet aus dem Gelenk des murinen Antikörpers von IgG2 und verleiht dem Hemmpeptid Flexibilität. Um die potentielle Immunogenität des exprimierten Peptides zu reduzieren, wurde der Linker des murinen Antikörpers IgG2 durch Gelenke ("Hinge") von humanen Antikörpern der IgG-Klasse ersetzt. Das Konstrukt mit der humanen "Hinge" von IgG2 exprimierte genauso hoch wie das Basiskonstrukt und hemmte mindestens so effizient die HIV-Replikation. Durch die N-terminale Verlängerung des C-Peptids um 10 Aminosäuren konnte das Risiko der Resistenzbildung minimiert werden. Das verlängerte C-Peptid war in der Lage, HIV-Hüllproteine zu hemmen, die gegen das C36/T20-Peptid resistent sind. Das optimierte Peptid von M87o bestand somit aus dem Membrananker von trunkiertem CD34, dem Linker von humanem IgG2 sowie aus dem verlängerten C-Peptid (C46). Weiterhin wurde ohne Verlust der Expression oder Hemmwirkung des membranverankerten C-Peptids ein RNAElement (RRE decoy) erfolgreich als weiteres Hemmprinzip in den Vektor eingefügt, um die Bildung resistenter HIV-Stämme zu unterbinden. Durch Einsatz eines optimierten Leaderelementes im retroviralen Vektor konnte die Expression des inhibitorischen Peptides mehr als verzehnfacht werden. Damit konnte das Peptid und dessen Hemmung erstmals auch in primären Zellen nachgewiesen werden. Der Vergleich zwischen dem Basiskonstrukt M87-Ineo und dem optimierten Konstrukt M87o-RRE-Ineo zeigte, dass die erhöhte Expression auch mit einer wesentlich verbesserten Hemmwirkung einherging. In Zell-Zellfusionsassays wurde außerdem nachgewiesen, dass die Wirkung des C-Peptids auf der Hemmung des Viruseintritts von HIV in die Zelle beruht. Für die klinische Applikation wurde der Vektor M87o-RRE konstruiert, der die optimalen Vektorelemente und Peptidmodule enthielt, aber aus dem das Neomycin-Resistenzgen entfernt wurde. Dies führte zu einer nochmals höheren Expression des C-Peptids sowie zur weiteren Verminderung der Immunogenität des retroviralen Vektors. Das Markergen wurde ohnehin nicht mehr benötigt, da die genetisch modifizierten Zellen aufgrund der hohen Transgenexpression einfach detektiert werden konnten. Der optimierte Vektor M87o-RRE hemmte die HIV-Replikation so effizient, dass bisher keine resistenten Stämme isoliert werden konnten. Bei Toxizitätsstudien in Maus und Rhesusmacaquen konnten keine Nebenwirkungen oder Immunogenität beobachtet werden. Durch die erfolgreiche Optimierung steht nun für die klinische Studie der Phase I der bestmögliche retrovirale Vektor zur Verfügung.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marc Andreas Egelhofer
URN:urn:nbn:de:hebis:30-0000003995
Referee:Joachim W. EngelsORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/05/03
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/03/24
Release Date:2004/05/03
HeBIS-PPN:120851482
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht