Conjugators of Fuchsian groups and quasiplatonic surfaces

  • Let G be a Fuchsian group containing two torsion free subgroups defining isomorphic Riemann surfaces. Then these surface subgroups K and alpha-Kalpha exp(-1) are conjugate in PSl(2,R), but in general the conjugating element alpha cannot be taken in G or a finite index Fuchsian extension of G. We will show that in the case of a normal inclusion in a triangle group G these alpha can be chosen in some triangle group extending G. It turns out that the method leading to this result allows also to answer the question how many different regular dessins of the same type can exist on a given quasiplatonic Riemann surface.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ernesto Girondo, Jürgen Wolfart
URN:urn:nbn:de:hebis:30-11877
URL:http://www.math.uni-frankfurt.de/~wolfart/wolfart.html
Document Type:Preprint
Language:English
Date of Publication (online):2005/06/29
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/06/29
Note:
Preprint, Frankfurt a. M. und Madrid, 2004, erscheint in Quart. J. Math.
Source:Preprint, Frankfurt a.M. und Madrid 2004, erscheint in Quart. J. Math., http://www.math.uni-frankfurt.de/~wolfart/wolfart.html
HeBIS-PPN:129536873
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht