Kinderzeichnungen und Uniformisierungstheorie

  • Es wird eine Einführung in den Satz von Belyi und Grothendiecks Dessins d'enfants gegeben, hier Kinderzeichnungen genannt. Dieses Arbeitsgebiet ist in den letzten zwanzig Jahren entstanden und weist viele reizvolle Querverbindungen auf von der inversen Galoistheorie über die Teichm llerräume bis hin zur Mathematischen Physik. Das Schwergewicht des folgenden Beitrags liegt in den Beziehungen zu den Fuchsschen Gruppen und der Uniformisierungstheorie: Kinderzeichnungen bieten die Möglichkeit, für arithmetisch interessante Riemannsche Flächen - die als algebraische Kurven über Zahlkörpern definiert sind - Überlagerungsgruppen explizit zu beschreiben und umgekehrt aus gewissen Typen von Überlagerungsgruppen Kurvengleichungen zu gewinnen. Was hier aufgeschrieben ist, behandelt eigentlich nur bekanntes Material, gelegentlich mit neuen Beweisvarianten und Beispielen. Da aber noch keine zusammenfassende Einführung in das Thema existiert, hoffe ich, dass es als Vorlage für ein Seminar oder eine fortgeschrittene Vorlesung nützlich sein mag.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jürgen Wolfart
URN:urn:nbn:de:hebis:30-11732
URL:http://www.math.uni-frankfurt.de/~wolfart/wolfart.html
Document Type:Report
Language:German
Year of Completion:2001
Year of first Publication:2001
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/06/27
HeBIS-PPN:129532509
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht