Analytik von Kontaminationen auf Siliciumoberflächen : Möglichkeiten und Grenzen des VPD-Verfahrens

  • In der Halbleiterindustrie führen in der Massenproduktion von Mikroelektronik-Bauelementen bereits geringfügige Mengen an metallischen Verunreinigungen zu einer erheblichen Verminderung der Ausbeuten und setzen die Zuverlässigkeit der Bauelemente drastisch herab. Deshalb müssen nicht nur die als Ausgangsmaterial verwendeten Siliciumscheiben bezüglich des Kontaminationsgrades durch Fremdatome höchsten Ansprüchen genügen, sondern auch die einzelnen Fertigungsschritte für die Produktion von elektronischen Bauelementen. Für die Detektion der Oberflächenverunreinigungen kommt in der Halbleiterindustrie die Totalreflexions-Röntgenfluoreszenz-Spektrometrie (TXRF) mit einer Empfindlichkeit von 1010 Atomen/cm2 zum Einsatz. Mittlerweile liegen die Anforderungen deutlich unterhalb dieser Nachweisgrenze. Durch Anwendung des Aufkonzentrierungsverfahrens VPD (Vapour-Phase-Decomposition) in Kombination mit etablierten Analysemethoden wie TXRF oder GF-AAS (Graphitrohr-Atom- Absorptions-Spektrometrie) können die in der Halbleiterindustrie notwendigen Nachweisgrenzen zur Detektion der Metalloberflächenbelegungen erreicht werden. VPD ist ein Verfahren, das thermische, chemische oder native Oxide auf Siliciumscheiben durch HFDampf ätzt. Metallische Verunreinigungen, die sich auf oder in der Oxidschicht befinden, können anschließend durch Abscannen der hydrophoben Oberfläche mit einem Tropfen eingesammelt werden. Zwei wichtige Begriffe, die unmittelbar im Zusammenhang mit dem VPD-Verfahren stehen, sind die Einsammelrate (Collecting Efficiency CE) und die Wiederfindungsrate (Recovery Rate RR) des Analyten. Die vorliegende Arbeit beschäftigt sich mit der Bestimmung der beiden Größen am Beispiel des Mangans und des Eisens. Dabei spielt die Frage nach der Zuverlässigkeit und Reproduzierbarkeit der verwendeten Analysemethode eine wichtige Rolle. Inwiefern beeinträchtigt das Silicium, das aus der SiO2-Schicht in Lösung geht und nach einem Trocknungsprozess im Rückstand verbleibt, die mittels TXRF erhaltenen Wiederfindungsraten des Analyten. Da die Antworten auf diese Fragen nur in Verbindung mit anderen Analyseverfahren gefunden werden konnten, kamen neben TXRF, GF-AAS und Photometrie auch radiochemische Methoden zum Einsatz. Im Rahmen der vorliegenden Arbeit wurde zunächst das Adsorptionsverhalten des Mangans auf der Silicium (100)-Oberfläche in verdünnter ammoniakalischer Wasserstoffperoxid- Lösung (SC1) untersucht. Zwischen der Mangan-Konzentration in der SC1-Lösung und der Oberflächenbelegung auf den Siliciumscheiben besteht ein deutlicher Zusammenhang. Mit zunehmender Konzentration in der Lösung steigen die mit TXRF ermittelten Oberflächenbelegungen an. Eine Sättigung der Manganbelegung war im untersuchten Konzentrationsbereich nicht nachweisbar. XPS-Spektren zufolge handelt es sich bei der adsorbierten Mn-Spezies um Mn(III)- und/oder Mn(IV)-Oxide. Winkelabhängige TXRF-Untersuchungen dokumentieren die Filmeigenschaften der Mn- Kontaminationen der aus SC1-Lösungen präparierten Siliciumscheiben. Erst ab hohen Mangankonzentrationen von 15 ppmw im SC1-Bad sinkt der Filmanteil der Adsorption auf 42 %. Auch die aus wässrigen sauren Mn-Lösungen kontaminierten Proben zeigen überwiegend einen filmartigen Charakter der Metalladsorption. VPD-TXRF Analysen wurden zunächst mit SC1 behandelten Siliciumscheiben durchgeführt, deren Mn-Oberflächenbelegungen im Bereich von 1 10 x 1012 Atomen/cm2 lagen. Die ermittelten Mn-TRR-Werte (TRR (totale Wiederfindungsrate) = CE X RR) zeigten deutliche Differenzen zum Maximalwert von 1 und dehnten sich über einen Bereich von 0,55 0,68 aus. Durch den Vergleich mit AAS und TXRF (Gerät EXTRA IIA) konnten die Ursachen für die Minderbefunde der TRR-Werte u.a. auf die direkten TXRF-Messungen (Gerät 8010) zurückgeführt werden, welche die Mn-Ausgangsbelegungen um etwa 20 % überbewerten. Wie sich herausstellte, führt die Quantifizierung von filmartigen Oberflächenbelegungen mit Hilfe eines externen Partikelstandards zu einer Überbewertung der Kontamination. Diese Feststellung wird durch den Vergleich zwischen TXRF 8010 und radiochemischen Messmethoden untermauert. Generell kann es bei der Quantifizierung der Oberflächenbelegungen mittels TXRF 8010 zu Fehlinterpretationen kommen, wenn der Analyt und der Standard ein unterschiedliches Fluoreszenzverhalten in Abhängigkeit des Einfallswinkels aufweisen. Es kommt dadurch zu einer Unterbewertung von partikelartigen Mangan- und Eisenkontaminationen, die nach eigenen Einschätzungen 10 % betragen kann. Weiterhin dokumentieren die Mn-TRR-Werte deutlich die Unterschiede zwischen externer und interner TXRF-8010 Kalibrierung. Die Differenzen der TRR-Werte von durchschnittlich 0,35 ergeben sich aus der verminderten Fluoreszenzstrahlung des internen Standards Rubidium. Die aus den TXRF-Spektren entnommenen Netto-counts des Rubidiums liegen deutlich unterhalb des Erwartungswertes der 1 ng entsprechenden Menge. Die TRR-Werte des Mangans von TXRF (Gerät EXTRA IIA) und AAS liefern vergleichbare und vor allem reproduzierbare Ergebnisse. Die Übereinstimmung der Ergebnisse zeigt deutlich, dass die beiden Analysemethoden als Vergleichsmethoden zu TXRF 8010 geeignet sind. Die Zuverlässigkeit der beiden Methoden dokumentiert sich auch in den übereinstimmenden Ergebnissen der Mn- und Fe-Wiederfindungsraten. Für diesen Vergleich wurden unterschiedlich konzentrierte Mn- und Fe-Lösungen in verschiedenen Matrices angesetzt. Die im Vergleich zu AAS und TXRF EXTRA IIA niedrigeren Wiederfindungsraten von TXRF 8010 sind u.a. auf die Kalibrierung mit dem 1 ng Ni-Standard zurückzuführen. Weiterhin konnte festgestellt werden, dass die TXRF-Messungen der in Siliciummatrix vorliegenden Mn- und Eisenproben noch deutlichere Minderbefunde aufweisen. Die Ursachen dafür sind Streueffekte, die durch die Siliciummatrix im Rückstand hervorgerufen werden (s.u.). Wie aus den radioaktiven Tracer-Experimenten hervorgeht, kann der überwiegende Teil der Gesamtkontamination des Mangans und des Eisens auf der Siliciumscheibe durch den ersten Abrollvorgang eingesammelt werden. Anhand der Mangan- und Eisenmengen, die im ersten DSE-Tropfen mittels ³-Messung detektiert werden, errechnen sich die durchschnittlichen Collecting Efficiencies von Mangan und Eisen zu 96,5 bzw. 98,5 %. Die Einsammelraten sind in dem untersuchten Konzentrationsbereich unabhängig von der Ausgangsbelegung. Collecting Efficiencies können auch ohne Kenntnis der Ausgangsbelegung bestimmt werden, wenn die Gesamtmenge der Kontamination durch die Analyse der VPD-Rückstände und der Restbelegung auf der Siliciumscheibe ermittelt wird. Die Bestimmung der Collecting Efficiency nach dieser Methode ist sinnvoll, da eine fehlerhafte Analyse der Ausgangsbelegung - wie am Beispiel der direkten TXRF-Messung gezeigt - zu verfälschten Resultaten führt. Die Anwendbarkeit beschränkt sich jedoch nur auf nichtflüchtige Analyten. Im Vergleich zur ³-Analyse zeigen die Mn-Wiederfindungsraten von TXRF 8010 deutliche Minderbefunde. Auch in diesem Beispiel liegen die Ursachen für die Unstimmigkeiten u.a. in der Kalibrierung durch den 1 ng Ni-Standard begründet. Beim Eisen deutet sich ein konzentrationsabhängiger Trend an. Die höchsten Fe-Wiederfindungsraten erhält man von den Proben mit den niedrigsten Ausgangsbelegungen. Ein Erklärungsansatz beruht auf der Annahme, dass hohe Konzentrationen an Kationen (>1015 Fe-Atome pro Siliciumscheibe) die Verflüchtigung des Siliciums als SiF4 verstärkt unterbinden und somit zu einer massiven Siliciummatrix im VPD-Rückstand führen. Daraus resultieren Streueffekte durch die Matrix, die ein vermindertes Fluoreszenzsignal des Analyten zur Folge haben. VPD-Experimente an SC1-gereinigten Siliciumscheiben belegen, dass der eingetrocknete Rückstand im Wesentlichen aus Silicium besteht. Die Summe der Metallverunreinigungen der SC1- gereinigten Proben liegt deutlich unterhalb 1015 Atomen pro Siliciumscheibe. Wie am Beispiel des Mangans und des Eisens gezeigt werden konnte, liegt die Zuverlässigkeit des VPD-Verfahrens in den hohen und vor allem reproduzierbaren Einsammelraten. Die festgestellten Differenzen der TRR-Ergebnisse sind ausschließlich auf die unterschiedlichen Wiederfindungsraten der eingesetzten Analysemethoden zurückzuführen. Radiochemische Messmethoden wurden bis auf wenige Ausnahmen für derartige Untersuchungen noch nicht angewendet. Die übereinstimmenden Ergebnisse mit den etablierten Analysemethoden und die hohe Empfindlichkeit der ²- und ³-Analyse zeigen ihr Potenzial als Ergänzungsmethode auf diesem Anwendungsgebiet. Die chemischen Wechselwirkungen zwischen Flusssäure und der SiO2-Schicht während des Ätzprozesses im VPD-Reaktor sind abhängig von der relativen Luftfeuchtigkeit. Anhand der Siliciummengen, die nach dem Ätzprozess mit Hilfe unterschiedlicher DSE-Lösungen eingesammelt wurden, konnten viele neue Informationen erarbeitet werden. Das entwickelte qualitative Modell beschreibt in Abhängigkeit von der relativen Luftfeuchtigkeit, in welcher Phase (fest/flüssig/gasförmig) das aus der SiO2-Schicht geätzte Silicium vorliegt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Steffen Metz
URN:urn:nbn:de:hebis:30-0000009402
Referee:B. O. Kolbesen
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2005/06/03
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/10/06
Release Date:2005/06/03
GND Keyword:Silicium; Oberfläche; Kontamination; Fluorwasserstoff; Ätzen
HeBIS-PPN:128914653
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht