Untersuchungen der Kontaminationsaspekte von Barium, Strontium, Bismut, Iridium und Platin auf Si-(100)-Oberflächen : (im Hinblick auf die Integration ferroelektrischer Schichten in der Speichertechnologie)

  • Mit der fortschreitenden Verkleinerung von Prozessoren und Speicherbausteinen in der Mikroelektronik ist der Einsatz neuer Materialien oft unumgänglich. Zur Zeit steht Siliciumdioxid, das als Dielektrikum in Transistoren eingesetzt wird, im Blickfeld des Interesses. Die kleiner werdenden Strukturen führen hier zu dünneren SiO2-Schichten, was bei Schichtdicken unter 2 nm einen Anstieg der Tunnelströme im SiO2 zur Folge hat. Dies stellt für die Bauelemente ein erhöhtes (Kurzschluss-) Risiko dar. Seit geraumer Zeit finden spezielle Speicherzellen große Aufmerksamkeit, in denen Perowskite für die Gate-Oxidschichten zum Einsatz kommen. Sie sind charakterisiert durch hohe Dielektrizitätskonstanten (ε > 20, SiO2 ~ 4 ) oder weisen ferroelektrische Eigenschaften auf. Als interessante Kanditaten für das Dielektrikum gelten zur Zeit BST (Barium-Strontium-Titanat), SBT (Strontium-Bismut-Tantalat) oder PZT (Blei-Zirkonium-Titanat). Die Einführung neuer Materialien in die Chip-Technologie ist immer mit einem Risiko verbunden. Einer der Hauptfaktoren für die Ausbeutelimitierung bei der Produktion von Halbleiterbauelementen ist die Metallkontamination auf Silicium-Oberflächen. Aufgrund ihrer Eigenschaften können Metallverunreinigungen die elektrischen Eigenschaften von Halbleiterbauelementen schädigen. Bisherige Untersuchungen an oben genannten Schichten konzentrierten sich auf das elektrische und physikalische Verhalten. Wenig war bislang bekannt über das Kontaminationsverhalten und dadurch bedingte Auswirkungen/Risiken auf die Bauelemente. Im Rahmen der vorliegenden Arbeit wurden Kontaminationsaspekte, insbesondere während Hochtemperaturprozessen, einiger Metalle auf Silicium (100)-Oberflächen näher untersucht. Das Hauptaugenmerk lag hierbei neben dem Adsorptions- und Desorptionsverhalten auf der Diffusion folgender Elemente: Barium, Strontium, Bismut, Iridium und Platin. Erkenntnisse über die Reaktivität der Metalle bei unterschiedlichen Reaktionsbedingungen sollten mögliche Risikofaktoren des Einsatzes neuer obiger Dielektrikum-Schichten aufzeigen. Die Ergebnisse für die untersuchten Elemente der II. Hauptgruppe, Barium und Strontium sprechen für ein träges Reaktionsverhalten während der Temperprozesse. Unter den vorliegenden Bedingungen wurden die Metalle im nativen oder thermischen Oxid eingelagert (gute Oxidbildner) und ließen sich mittels einer Oxid-Ätzung vollständig von der Si-Oberfläche entfernen. Unabhängig von der Atmosphäre (N2, O2) und der Si-Oberfläche (hydrophil, hydrophob) waren keine Quer-Kontaminationen durch Desorption zu beobachten. Angesichts der starken Tendenz zur Oxid-Bildung bzw. Einlagerung ließ sich keine nennenswerte Diffusion ins Si-Substrat erkennen. Ferner war ein Einfluss auf die Oxidationsrate und Oberflächenrauhigkeit nicht zu beobachten. Mit Blick auf den Einsatz in der CMOS-Technologie stellen Barium und Strontium, wegen ihres geringen Diffusionsvermögens, keine Gefahr für die Si-Substrateigenschaften dar. Sie können jedoch als Verunreinigungen Si-Oxid zu einer Anreicherung an zusätzlichen positiven Ladungen führen und sich negativ auf die Qualität des Oxids auswirken. Bismut präsentierte sich auf hydrophilen Si-Substraten insbesondere unter N2-Atmosphäre als sehr volatil. Dieses Verhalten, höchstwahrscheinlich flüchtiger Bi-Oxide, kann durch Gasphasentransport zu Quer-Kontaminationen benachbarter Si-Substrate führen. Unabhängig von der Temperatmosphäre lassen sich Quer-Kontaminationen ausschließlich auf oxidierten Si-Substraten beobachten, was auf die Notwendigkeit eines bereits vorhandenen dünnen Siliciumoxids als Voraussetzung für eine Quer-Kontamination hindeutet. Eine mögliche Erklärung wäre in der Bildung von weniger flüchtigen Bi-Silikaten zu finden. Die enormen Verluste an Bismut auf hydrophoben Oberflächen finden eine Begründung in dem hohen Abdampfverhalten des vermutlich reduktiv abgeschiedenen Bismuts auf dem Silicium Ähnlich wie Barium und Strontium bevorzugt Bismut den Verbleib im Oxid während Oxidationsprozessen (Bildung von Oxiden und mgl. Bi-Silikaten). Auch hier wiesen die Verunreinigungen keinen Einfluss auf das Oxidwachstum sowie dessen Oberflächenrauhigkeit auf und ließen sich mit einer Oxid-Ätzung von der Si-Oberfläche entfernen. Tiefenprofil- und ELYMAT-Untersuchungen ließen keine Diffusion und schädliche Einflüsse auf die Eigenschaften des Siliciums beobachten. Prozesstechnisch gesehen ist die Bildung möglicher Bi-Silikate unerwünscht, da sie wegen der unterschiedlichen Dichte des SiO2 zu Stress-Regionen auf dem Wafer führen können [21]. Weiterhin besteht gerade in der hohen Flüchtigkeit und Quer-Kontamination ein hohes Kontaminationsrisiko für die Prozess-Apparaturen, andere Wafer und somit der „Verschleppung“ in andere Technologien. Von einer anderen Seite zeigten sich die untersuchten Metalle der Platingruppe, Iridium und Platin. Verunreinigungen an Iridium diffundieren, unabhängig von den RTPBedingungen, ins Si-Substrat und führen zu einer eindeutigen Verringerung der Ladungsträgerlebensdauer („Liftime-Killer“ [45]). Hier zeigten in O2 behandelte Substrate niedrigere Eindringtiefen, was auf eine stärkere Desorption flüchtiger Oxidverbindungen und denkbaren Ir-O-Si-Verbindungen im SiO2 [174] zurückgeht. Parallel hierzu waren Quer-Kontaminationen zu beobachten die durch die Flüchtigkeit von IrO3 erklärt werden können. Ferner führen Verunreinigungen an Iridium zu einem geringeren Oxidwachstum. AFM-Untersuchungen unterstützen die Vermutung einer Ir-Silicidierung an der SiO2/Si-Grenzfläche unter N2-Atmosphäre und forcieren die Bildung von diffusionseinschränkenden Ir-Verbindungen unter O2. Das in der Halbleiter-Technologie bereits eingesetzte Platin ist ausreichend untersucht worden [45] und begleitete die Untersuchungen als Referenzelement. Aus der Literatur bereits bekannt, zeigt Platin ein ausgeprägtes Diffusionsvermögen in das Si-Substrat, unabhängig von dem Temperaturprozess. Dort wirkt es als Generations-/ Rekombinationszentrum und reduziert die Lebensdauer der Ladungsträger. Quer-Kontaminationen waren generell nicht zu beobachten, da unter den vorliegenden Versuchsbedingungen keine flüchtigen Pt-Verbindungen gebildet werden. Dem Iridium ähnlich zeigte Platin bei 1000°C unter O2 im Vergleich eine etwas niedrigere Oxiddicke, was ebenfalls in der Bildung einer Diffusionsbarriere bzw. Pt-O-Si-Bereichen [174] einen möglichen Interpretationsansatz findet. Hinsichtlich des Einsatzes in der Halbleitertechnologie stellen Iridium und Platin wegen ihrer Eigenschaften (hohe Mobilität sowohl im SiO2 und Si, Gasphasentransfer (Ir unter O2), Reduktion der Ladungsträgerlebensdauer) ein enormes Risiko- und Störpotential dar. Während bei Bismut ebenso die Gefahr der Quer-Kontamination besteht, sind die Metalle Barium und Strontium dagegen als weniger kritisch einzustufen.

Download full text files

  • Dissertation_GernodKilian.pdf
    deu

    Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Gernod Kilian
URN:urn:nbn:de:hebis:30-34104
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Bernd O. Kolbesen, Martin U. SchmidtGND
Advisor:Bernd O. Kolbesen
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/11/28
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/11/22
Release Date:2006/11/28
GND Keyword:Siliciumbauelement; Halbleiteroberfläche; Kontamination; Übergangsmetall; Diffusion; Rapid thermal processing; Halbleiterspeicher
Page Number:120
First Page:1
Last Page:109
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:347811221
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG