Biochemical and genetic analysis of the Apaf-1-binding protein Aven

  • Apoptose ist für grundlegende Prozesse des Lebens wie die Embryonalentwicklung und die Infektabwehr unentbehrlich. Defekte im Apoptoseprozess haben ernste Erkrankungen wie z.B. Krebs zur Folge. Ein charakteristisches Kennzeichen von Krebszellen ist deren Apoptoseresistenz, die verhindert, dass Krebszellen auf natürlichem Wege vernichtet werden. Die Tumorzellen reagieren im allgemeine nicht mehr auf Zelltod-Signale, die z. B. bei Nähr- und Sauerstoffmangel oder einem Angriff durch Effektorzellen des Immnunsystems empfangen werden. Ein wesentlicher Grund dafür sind Mutationen im Signalweg der Apoptose. Häufig wird in Tumoren die Überaktivierung von antiapoptotischen Proteinen beobachtet. Die Aufklärung der Apoptose-Signalwege und die Charakterisierung der ihnen zu Grunde liegenden molekularen Interaktionsmechanismen sind wichtig für die Erklärung der Pathogenesse vieler Erkrankungen. Daher ist es von großem Interesse, neue anti-apoptotische Proteine zu identifizieren, die als Targets zur Entwicklung alternativer therapeutischer Strategien benutzt werden können. Ein wichtiger Bestandteil des Apoptoseweges ist das Mitochondrium. Ausgangspunkt für den mitochondrialen oder intrinsischen Apoptose-Signalübertragungsweg ist die Freisetzung von Cytochrom c (Cyt c) und anderen apoptogenen Faktoren aus dem Mitochondrien. Zytoplasmatisches Cytochrom c bindet zusammen mit ATP oder dATP an das Adaptorprotein Apaf-1 und induziert daraufhin eine Konformationsänderung sowie die Oligomerisation von Apaf-1. Die Selbstassoziation von Apaf-1 führt zur zusätzlichen Rekrutierung von Caspase-9, die in diesem des sogenannten Apoptosomskomplexes durch die Erhöhung ihrer lokalen Konzentration autokatalytisch aktiviert wird. Aktive Caspase-9 wiederum spaltet und aktiviert Effektorcaspasen wie Caspase-3, die zelluläre Targetproteine spalten und damit den Zelltod verursachen. Viele apoptotische Stimuli aktivieren den mitochondrialen Apoptoseweg. Defekte im intrinsischen Signalweg finden sich häufig im Tumoren und sind oft mit Resistenzen gegen apoptoseauslösende Krebstherapien assoziert. Anti-apoptotische Proteine, die mit dem apoptotischen Programm an dieser Stelle interferieren und in Tumoren überexprimiert werden, stellen attraktive Targets für Tumortherapien dar. In der Arbeitsgruppe von Dr. Martin Zörnig am Georg-Speyer-Haus wurde ein S. pombe Hefesystem etabliert, um in einem funktionellen „Survival-Screen“ neue anti-apoptotische Säugergene aus Tumor-cDNA-Banken zu identifizieren. Hefen können durch die Expression bestimmter pro-apoptotischer Säugerproteine abgetötet werden. Dieser Hefezelltod weist äusserliche Gemeinsamkeiten mit apoptotischen Zellen multizelluläre Organismen auf. Frühere Studien haben gezeigt, dass es möglich ist, mit Hilfe dieses Screens tatsächlich anti-apoptosische Säugerproteine zu identifizieren, die den induzierten Hefezelltod inhibieren können. In einem Screen, bei dem das Apaf-1 Homolog in C.elegans, CED-4, als Killerprotein verwendet wurde, konnte unter anderem das Gen Aven isoliert werden, das nicht nur CED-4-induzierten Zelltod in Hefe, sondern auch Apaf-1/Casp-9-vermittelte Apoptose in Säugerzellen inhibiert. Dabei wurde ein unvollständiges ΔAven-cDNA-Plasmid isoliert, dem das 5´-Ende fehlte. Diese Verkürzung ist vermutlich auf ein vorzeitiges Abbrechen der cDNA-Synthese durch die Reverse Transkriptase zurückzuführen. Die vollständige humane Aven cDNA wurde im Rahmen einer Kooperation von Prof. J. M. Hardwick (J. Hopkins University, Baltimore USA) bereitgestellt, zusammen mit zwei polyklonalen anti-Aven Antiseren. Die Antisera erkennen die N-terminalen Aminosäuren 98-112 (anti-Aven A) sowie am C-terminus aa 256-268 (anti-Aven B). In der AG Zörnig wurde ein zusätzliches Antiserum (anti-Aven C) gegen ein Peptid generiert, das die letzten 17 Aminosäuren des humanen und des Maus-Aven-Proteins erkennt. Aven wurde in der Gruppe von M. Hardwick als anti-apoptotisches Protein beschrieben, das an das anti-apoptotische Bcl-2 Familienmitglied Bcl-xL und Apaf-1 bindet (Chau et al., 2000). Aven wurde mit Hilfe eines „Hefe-2-Hybrid Screens“ mit Bcl-xL als Köder („bait“) isoliert. Es wurde publiziert, dass Aven die Apaf-1 Selbstassoziation (und damit Caspase-9-Aktivierung) verhindert. Das humane Aven Gen kodiert für insgesamt 362 Aminosäuren. Die Sequenz ist in zahlreichen Spezies hoch konserviert. Aven mRNA Expression wurde in vielen Geweben (Herz, Nieren, Pankreas, Testis und Skelet-Muskulatur) und in mehreren Zelllinien gefunden. Dies deutet auf eine ubiquitäre Expression hin. In der Zelle ist Aven hauptsächlich im Zytoplasma lokalisiert. Immunfluoreszenzanalysen der Arbeitsgruppe Hardwick zeigten zusätzlich eine schwache Expression des Proteins im Nukleus. In der Arbeitsgruppe Zörnig konnte gezeigt werden, dass die isolierte Deletionsmutante ΔAven (aa 180-362) CED-4-induzierten Zelltod in Hefen inhibiert (Doktorarbeit M.L. Brezniceanu, unpublizierte Daten). Eine anti-apoptotische Wirkung konnte für ΔAven zusätzlich im Säugersystem verifiziert werden. Durch Überexpressionsstudien eines ΔAven- GFP-Fusionskonstruktes wurde Apaf-1/Caspase-9-induzierte Apoptose in der humanen Kolonkarzinomzelllinie RKO inhibiert. Weitere Experimente zeigten, dass sich in Tumoren des Kolons, der Niere und der Schilddrüse erhöhte Aven mRNA-Mengen nachweisen lassen und dass Aven auf mRNA-Ebene während der Entwicklung der Brustdrüse reguliert wird (unpublizierte Daten). Im Rahmen dieser Arbeit wurde Aven biochemisch und genetisch näher charakterisiert. Dabei wurden sowohl das volle-Länge-Aven sowie die artifizielle ΔAven Deletionsmutante untersucht. Zunächst wurde ein Teil der publizierten Daten verifiziert. Beschrieben ist eine Bindung zwischen Aven und Bcl-xL, die durch die N-terminale Domäne von Aven (Aminosäure 74-108) vermittelt wird. ΔAven, das den N-Terminus nicht enthält, sollte daher nicht an Bcl-xL binden können. In einem Immunpräzipitations-Experiment mit dem anti-Aven B Antiserum wurde entsprechend einer Interaktion mit Bcl-xL nur für das volle-Länge-Aven-Protein, nicht aber für ΔAven nachgewiesen. Den Publizierten Daten zufolge bindet Aven mit den Aminosäuren 180 bis 300 an Apaf-1, und diese Interaktion konnte in einem weiteren Ko-Immunpräzipitations-Experiment bestätigt werden. Ein Ziel dieser Arbeit bestand darin, den Einfluß von Aven auf die Bildung des Apoptosoms zu untersuchen. Dafür wurden Apoptosom-Immunpräzipitations-Experimente mit 293T Zelllysaten etabliert, in denen man endogene Apaf-1/Caspase-9-Komplexe nachweisen konnte. Durch Zugabe von Cytochrom c und dATP direkt zu den Zelllysaten wurde die Bildung des Apoptosoms induziert, das anschließend mit einem monoklonalen anti-Caspase-9 Antiköper immunpräzipitiert werden konnte. Bei gleichzeitiger Überexpression von ΔAven wurde weniger Apaf-1 mit Caspase-9 ko-immunpräzipitiert, ein Hinweis darauf, dass die Apoptosombildung unterdrückt wurde. Das Ergebnis wurde durch die Beobachtung bestätigt, dass Caspase-9-Spaltung und -Aktivierung durch ΔAven vermindert wurde. Interessanterweise konnte eine Überexpression des volle-Längen Aven-Proteins die Bildung des Apoptosoms nicht verhindert. Apaf-1 wurde wie bei den Lysaten nichttransfizierter Zellen mit Caspase-9 Ko-immunopräzipitiert, und die Caspase-9 Spaltprodukte p35 und p37, die bei Aktivierung des Apoptosoms entstehen, wurden unverändert detektiert. Bei den beschriebenen Ko-Immunpräzipitationsexperimenten konnte auch eine Bindung von Aven und ΔAven an Caspase-9 (und nicht nur an Apaf-1) nachgewiesen werden. Diese Ergebnisse zeigen, dass der C-Terminus von Aven für die Bindung an Caspase-9 wichtig ist. Interessanterweise nahm die Bindung von ΔAven an Caspase-9 nach Apoptosominduktion ab, während kein Unterschied in der Bindung des vollständigen Aven-Proteins an Caspase-9 vor oder nach Apoptosominduktion beobachtet werden konnte. Wegen der Bindung von Aven und ΔAven an Caspase-9 konnte mit diesen Experimenten nicht festgestellt werden, ob Aven bzw. ΔAven Teil des gebildeten Apoptosomkomplexes sind, d. h. ob sie auch nach Apoptosombildung an Apaf-1 binden. Eine Hemmung der Apoptosomsbildung führt zur Inhibierung der Caspase-Aktivierungskaskade und damit zu verringerter Caspase-3 Aktivität. Entsprechend wurde die Caspase-3-Aktivität nach in vitro Apoptosominduktion bei Überexpression von ΔAven inhibiert, während das volle-Länge Aven keinen Einfluß auf die Caspase-3-Aktivität hatte. In weiteren Verlauf des Projektes wurden funktionelle Apoptoseexperimente mit transfizierten RKO-Zellen durchgeführt. Die Ergebnisse zeigten eine Protektion durch Aven und ΔAven nach Staurosporin- und UV- Behandlungen. Dabei zeigte ΔAven einen stärkeren anti-apoptotischen Effekt als das volle-Länge-Aven in vivo. Die Tatsache, dass ΔAven ein höheres anti-apoptotisches Potential als das volle-Länge-Aven-Protein aufweist, deutet auf eine mögliche Spaltung oder Konformationsänderung von Aven in vivo hin, die zur Entstehung eines aktiven anti-apoptotischen C-terminalen Proteins führt. Um dies nachzuweisen, wurden einzel- und doppel-getaggte Fusionskonstrukte kloniert. Western Blot Analysen mit dem anti-Aven B Antiserum zeigten zusätzlich zu der volle-Längen-Aven- Bande (50 kDa) eine kleinere immunreaktive Bande mit einer Größe von ca. 35 kDa. Nach Apoptoseinduktion nahm die relative Menge dieser kleineren Bande zu. Das 35 kDa Aven-Spaltprodukt wurde nicht nur nach Überexpression, sondern auch auf endogener Proteinebene detektiert. Es konnte gezeigt werden, dass diese Spaltung Caspasen-abhängig ist. Eine Behandlung der Aven-überexprimierenden Zellen vor Apoptoseinduktion mit dem Caspase-Inhibitor z-VAD-fmk blockierte die Spaltung von Aven vollständig. Gleiche Ergebnisse konnten mit dem endogenen Protein gezeigt werden. Obwohl die Aven-Sequenz keine in silico vorausgesagten Spaltstellen für Caspasen enthält, zeigten in vitro Experimente mit rekombinanter Caspase-3, dass Aven von Caspase-3 direkt prozessiert wird. In vivo Experimente mit Wildtyp-MCF-7-Zellen, die keine endogene Caspase-3 exprimieren, sowie mit transfizierten MCF-7-Zellen, die Caspase-3 stabil exprimieren, bestätigten dies. Aven wurde nur in den mit Caspase-3 transfizierten MCF-7-Zellen nach Staurosporin-Behandlung in das 35 kDa Fragment gespalten. Western Blot Analysen mit Antikörpern, die das N-terminale Ende von Aven erkennen (anti-Flag oder anti-Aven A) zeigten eine zusätzliche kleinere Bande. Dieses Spaltprodukt ist ungefähr 30 kDa groß, und im Vergleich mit dem 35 kDa Aven-Peptid veränderte sich seine Expression kaum unter apoptotischen Bedingungen. Dieses Aven-Fragment ist jedoch nicht das Ergebnis einer Caspase-Spaltung, weil seine Entstehung nicht durch z-VAD-fmk inhibiert wurde. Zusätzlich konnte gezeigt werden, dass auch Serin-Proteasen nicht für diese Spaltung verantwortlich sind. Western Blot Analysen mit Antikörpern, die gegen den C-Terminus von Aven gerichtet sind, zeigten erstaunlicherweise kein zusätzlichen Aven-Spaltprodukte, sondern nur das volle Länge-Aven-Protein. Offensichtlich ist das entstehende C-terminale Fragment nach Spaltung durch Caspase-3 instabil und kann nicht nachgewiesen werden. Zusätzliche, nicht näher identifizierte 40 und 45 kDa große Aven Spaltprodukte wurden in MCF7-Zellen detektiert, die jedoch nicht in RKO-, HeLa-, oder 293T-Zellen beobachtet wurden. Mit Hilfe einer frei verfügbaren Software (GrabCas; ein Programm, das auch Granzyme Bund Caspase-Spaltstellen voraussagt, die sich von den Konsensusspaltsequenzen unterscheiden) sowie mit Western Blot Analysen von verschiedenen Aven-Deletionsmutante sollten potenzielle Schnittstellen näher charakterisiert werden. Dabei wurde die Spaltung durch Caspase-3 bei D293 (oder D287) bestätigt. Außerdem wurden zusätzliche mögliche Spaltstellen bei aa 240 oder zwischen aa 142-175 in Aven gefunden. Eine Spaltung zwischen den Aminosäuren 142 und 175 würde zu einem ähnlichen C-terminalen Aven-Peptid führen wie das artifizielle ΔAven und sollte von daher potente anti-apoptotische Eigenschaften aufweisen. Eine weitere Spaltstelle wurde ungefähr bei aa 100 kartiert. Die Isolierung von Aven Spaltprodukten aus eindimensionalen SDS-PA Gelen für eine nachfolgende massenspektrometische Analyse war aus technischen Gründe leider nicht erfolgreich. Die vorausgesagte Aven-Prozessierungsstellen sowie die in Western Blot Analysen beobachteten Aven-Fragmente lassen die Schlussfolgerung zu, dass Aven nach proteolytischer Aktivierung (d. h. nach Abspaltung inhibierender N-terminaler Sequenzen) anti-apoptotische Eigenschaften annimmt. Das generierte C-terminale Peptid wird dann möglicherweise durch Caspase-3-Spaltung bei D293 inaktiviert, wenn ein starker apoptotischer Stimulus auftritt. Zu Aufklärung der physiologischen Funktion von Aven in Normalgewebe und um zu untersuchen, ob Aven bei der Tumorentstehung eine Rolle spielt, wurden verschiedene Mausmodelle etabliert. Dazu wurde die humane Aven-cDNA zum einen unter der Kontrolle eines Hühner-ß-Aktin-Promotors und eines CMV-Enhancers kloniert. Diese Kombination regulatorischer Elemente sollte zu einer hohen und ubiquitären Expression des Transgens führen. Zusätzlich wurde die humane Aven-cDNA in den Vektor p1017 unter die Kontrolle des proximalen lck-Promotors kloniert, der eine Expression in unreifen T Zellen erlaubt. Die Etablierung der Mauslinien wurde in Kollaboration mit dem GSF-Institut für Experimentelle Genetik (AG Prof. M. Hrabé de Angelis) in München durchgeführt. Bei einer Untersuchung der Organe zeigte sich, dass in der ß-Aktin Aven-transgenen Maus eine starke Überexpression von Aven nur im Herz nachgewiesen wurde. Diese transgenen Mäuse werden zurzeit in Kollaboration mit Dr. S. Barrère-Lemaire (Institut of Functional Genomics, Montpellier, Frankreich) analysiert. Des Weiteren wurde im Rahmen dieser Arbeit auch eine lck Aven-Maus Linie untersucht. Western Blot Analyse zeigten eine starke Proteinexpression des Transgens im Thymus und auch in reifen T-Zellen (Milz). Mit Hilfe des anti-Aven C Antiserums konnte im Western Blot ein weiteres, vorher nicht beobachtetes Aven-Spaltprodukt in Thymozyten und aufgereinigten periphären T-Zellen nachgewiesen werden. Diese Überexpression von Aven in Thymozyten und gereinigten T-Zellen hatte jedoch keine messbare Inhibition von Apoptose zur Folge. Dagegen wurde eine Inhibition der aktivierungsinduzierten Proliferation von T-Zellen in transgenen Aven-Mäuse beobachtet. Bemerkenswerterweise zeigten die transgenen Aven-Mäuse keine spontane Tumorentwicklung obwohl eine Korrelation zwischen Aven-Expression und einer schlechten Prognose in Kinderleukämien publiziert worden ist. Um zu untersuchen, ob Aven in Kombination mit anderen Onkogenen in Tumorentstehung oder Progression kooperieren kann, sollen transgene Aven-Mäuse mit anderen transonkogenen Mausstämmen (z.B. p53-/- Mäusen) gekreuzt werden.
  • Cancer arises as a consequence of disruption in the balance between cell growth, differentiation and cell death. The conventional cancer treatments by chemotherapy and radiation primarily cause mitochondrial disruption and activation of the intrinsic apoptosis pathway to trigger cell death. Consequently, defects in the mitochondrial pathway contribute to carcinogenesis and also provide the molecular basis for resistance against standard cancer therapies. Therefore, the identification of new anti-apoptotic targets to overcome cancer therapy resistance, as well as the restoration of the mitochondrial apoptosis pathway in tumours has become an important issue. To identify new anti-apoptotic oncoproteins, that are able to inhibit apoptosis after Cytochrome c release from the mitochondria, a functional yeast survival screen had previously been performed in the research group of Dr. Martin Zörnig (unpublished data). Several cDNA clones had been isolated from a human breast tumour cDNA library, which were able to inhibit yeast cell death induced by CED-4, the C. elegans homologue of mammalian Apaf-1. One of the isolated cDNAs represented the C-terminal half of the Aven gene, which was called ΔAven. The ΔAven-cDNA lacked the upstream sequences presumably due to a premature stop of cDNA synthesis by the reverse transcriptase. Previous work could show that ΔAven was not only able to inhibit CED-4- induced cell death in yeast but also apoptosis in mammalian cells (M.L. Brezniceanu, PhD. thesis, University of Frankfurt). Recently, the group of J.M. Hardwick (Johns Hopkins University, Baltimore, USA) published the first paper about Aven and described the molecule as an anti-apoptotic protein binding to Bcl-xL and Apaf-1 (Chau et al., 2000). In the course of this thesis, the influence of Aven and of the artificial C-terminal ΔAven mutant on apoptosome formation was investigated. Co-immunoprecipitation assays with 293T cell lysates demonstrated, that overexpression of the isolated deletion mutant ΔAven is much more effective in inhibiting Apaf-1/Casp-9-mediated apoptosis in mammalian cells than the full-length Aven. Apoptosome immunopreciptation (IP) assays revealed that less Apaf-1 is co-immunoprecipitated with Caspase-9 upon ΔAven overexpression. This indicates that apoptosome formation is repressed, a conclusion supported by the observation that Caspase-9 self-cleavage is decreased by ΔAven when compared to empty vector controls. Surprisingly, the overexpression of full-length Aven does not inhibit apoptosome formation nor does it influence Caspase-9 activation. Caspase-3 activity assays confirmed these results, showing inhibition of caspase activity by ΔAven (and not by full-length Aven). Furthermore, apoptosome IP assays revealed a direct interaction between full-length Aven and ΔAven with Caspase-9. The binding was observed regardless whether apoptosome assembly was induced or not. For this reason, we could not conclude from immunoprecipitation assays whether Aven is still present in the apoptosome complex or not. Functional assays in the human colon carcinoma cell line RKO uncovered anti-apoptotic behaviour of both full-length Aven protein and ΔAven. However, ΔAven was significantly more potent in suppression of apoptosis. These results suggest, that full-length Aven might be activated in vivo through conformational changes or proteolytical cleavage, which generates the active anti-apoptotic protein product. To test whether the ΔAven deletion mutant may have a physiological correlate in the cell, single- and double-tagged Aven constructs were cloned. Western blot analysis could indeed demonstrate the presence of two smaller Aven immunoreactive bands. Furthermore, a similar processing was observed with endogenous Aven protein. Interestingly, the amount of one of the processed Aven fragments with an apparent size 35 kDa increases after induction of staurosporine- or UV-mediated apoptosis. This cleavage is caspasedependent, and the caspase responsible for this processing was identified in vitro and in vivo as Caspase-3. Such hydrolysis upon stress signals most likely inactivates the relevant anti-apoptotic protein form of Aven. The second Aven cleavage product of 30 kDa is only detected by antibodies recognizing the Aven N-terminus, and it is not performed by caspases, because it could not be inhibited with the general caspase inhibitor z-VAD-fmk. The results obtained from immunoblot analysis combined with the predicted cleavage sites by the new caspase cleavage site-prediction software GraBCas suggests several putative cleavage sites within the Aven sequence (Backes et al., 2005). Immunoblot analysis of different Aven deletion mutants revealed that the cleavage site for Caspase-3 is located at D293 (or D287), while the N-terminal cleavage site for a non-caspase protease might be located at aa 240 or, alternatively, between aa 142-175, which would result in a C-terminal cleavage product similar to the artificial ΔAven. In addition, we found experimental evidence for further cleavage site around aa 100. Unfortunately, so far the precise identity of the observed processed Aven fragments could not be clarified by mass spectrometry sequencing due to technical problems. To investigate the physiological role of Aven in vivo, transgenic mouse models were established which were aimed to overexpress Aven either ubiquitously with a ß-actin promoter, or and specifically in T cells with a lck promoter. Only one lck Aven-transgenic mouse line could be analyzed during this work, which allowed to investigate Aven overexpression during T cell development and in peripheral T cells. Overexpression of fulllength Aven in thymocytes and purified mature T cells did not result in protection against apoptosis induction, possibly because not full-length Aven, but rather a smaller processed form of Aven is the active apoptosis suppressing Aven molecule. However, the proliferative capacity of Aven transgenic T cells was impaired, suggesting that overexpression of Aven may induce a delay in cell cycle entry and thereby, inhibit T cell proliferation. Despite the reported correlation between Aven expression and bad prognosis in childhood ALL, the lck Aven-transgenic mouse line did not develop any tumours. Further breedings will show whether Aven can cooperate with other transoncogenes in tumour development.

Download full text files

  • Thesis_Sara_Mateus.pdf
    deu

    Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sara Mateus Fernández
URN:urn:nbn:de:hebis:30-33647
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Bernd Ludwig
Advisor:Bernd Ludwig
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/11/21
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/07/06
Release Date:2006/11/21
Page Number:178
First Page:1
Last Page:154
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:348046766
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG