Simulationen zu zylindrischer Kompression von Plasmatargets
- Um, mit Simulationsexperimenten, den Einfluß des Strahlprofils auf die Pellet- bzw. Targetdynamik bei der Trägheitseinschlussfusion mit Schwerionenstrahlen zu untersuchen, wurde der Simulationscode MULTI2D so modifiziert, daß eine Darstellung der Energiedeposition in zwei kartesischen Koordinaten möglich ist. Für die Simulationen wurde die Strahl-Target-Kombination von V. Vatulin, O. Vinokurov und N. Riabikina, “Investigation of the Dynamics of Solid Cylindrical Targets Illuminated by Ion Beams with Elliptic Cross Section“, aus dem GSI Report High Energy Density in Matter Produced by Heavy Ion Beams (GSI-99-04), verwendet. Die in der Arbeit von Vatulin et al. verwendeten Strahlparameter, beziehen sich auf ein an der GSI in Darmstadt in Planung befindliches Ionen- und Antiprotonensynchroton mit wesentlich höherer Strahlleistung als beim gegenwärtigen Schwerionensychrotron SIS. Um eine ausreichend hohe Auflösung zu erhalten, wurde für die Target-Simulation in MULTI2D ein Lagrange-Gitter mit 43200 Gitterpunkten ausgewählt. Als erstes wurden umfangreiche Untersuchungen der Entwicklung der Temperatur, des Drucks, der Geschwindigkeit und der Dichte der Volumenelemente des Targets durchgeführt. Hierzu wurden zweidimensionale Targetschnitte dieser Größen zu bestimmten Zeiten, ortsaufgelöste Darstellungen dieser Größen entlang einer kartesischen Achse des Targetschnitts zu ausgewählten Zeiten, und zeitaufgelöste Darstellungen dieser Größen an bestimmten Orten des Gitters, bzw. in bestimmten Volumenbereichen des Targets angefertigt. Sowohl bei Bestrahlung mit radialsymmetrischem Hohlstrahl, als auch bei Bestrahlung mit elliptischem Hohlstrahl, werden innerhalb von 20 ns 1.4 MJ/g deponiert. Während und nach der Energiedeposition breitet sich eine Kompressionswelle sowohl in Richtung Targetzentrum als auch in Richtung Targetperipherie aus. ~ 25 ns nach Beginn der Energiedeposition erreichen Temperatur und Druck ihren Maximalwert im Zentrum des Targets. Der Radius des Gebiets maximalen Drucks vergrößert sich innerhalb der nächsten 2 ns auf ~6 x 10 exp -3. Die Kompressionswelle breitet sich langsamer in Richtung Targetzentrum aus, als der Druck und die Temperatur. Wegen des hohen Drucks im Zentrum, befindet sich der Ort maximaler Dichte nicht im Targetzentrum, ~ 24,5 ns nach Strahlungsbeginn einen Ring hoher Dichte um das Zentrum herum. Kurz darauf, ~24,6 ns nach Strahlungsbeginn, bildet sich, ausgelöst durch das Zusammentreffen der Dichtewelle im Targetzentrum, ein kleinerer Ring hoher Dichte um das Targetzentrum herum. Bereits nach 24.75 ns, also nur 0.2 ns nach dem Zusammentreffen der Materie im Zentrum, ist die Dichte in diesem Ring höher als im weiter vom Targetzentrum entfernt liegenden Ring hoher Dichte. Dies gilt sowohl für die Bestrahlung mit radialsymmetrischem Hohlstrahl, als auch für die Bestrahlung mit elliptischem Hohlstrahl. Die Maximalwerte der Größen Temperatur, Druck und Dichte im Target liegen bei Bestrahlung mit elliptischem Hohlstrahl bis zu 20% unter denen bei Bestrahlung mit radialsymmetrischem Hohlstrahl. Die Dichten im Ring maximaler Dichte liegen bei Bestrahlung mit radialsymmetrischem Hohlstrahl bei~ 160 g/ccm, bei Bestrahlung mit elliptischem Hohlstrahl knapp darunter. Das maximale Achsenverhältnis lag bei (1:2.25), bei größeren Achsenverhältnisen wird die weniger dichte Substanz im Zentrum des Pellets so ungleichmäßig komprimiert, das es vorzeitig zu einer Vermischung des Treibers im Pelletzentrum mit dem Pelletmantel kommt, so daß der Treiber nicht ausreichend komprimiert wird. Die theoretische Untersuchung, welchen Einfluss das Strahlprofil auf die Targetkompression hat ist von großer Bedeutung, weil der Transport und die Fokussierung von Schwerionenstrahlung so hoher Intensität, wie sie für eine Targetkompression mit Fusionsbrennen nötig sind, sehr schwierig und noch nicht Stand der Technik ist. Sollte durch andere Arbeiten bestätigt werden, daß bei direkter Bestrahlung eines Hohltargets, bzw. eines Targets mit einem Mantel aus relativ dichtem Material und einem weniger dichten Treiber im Targetzentrum, mit einem Schwerionen-Hohl-Strahl, das Maximum der Druckwelle das Zentrum nicht erreicht, und somit ein Ring bzw. eine Hohlkugel maximalen Drucks um das Zentrum herum gebildet wird, hätte das, falls diese Technik zur Anwengung kommt, Konsequenzen für die Kompressionsdynamik eines realen Pellets. Möglicherweise wird nach der Zündung des Plasmas ein größerer Teil des Treibstoffs schneller verbrannt werden als bei einer Zündung im Pelletzentrum, außerdem könnte sich die Lebensdauer des Pellets erhöhen. Dies hätte für den Fall der direkten Bestrahlung eines Hohltargets mit einem Schwerionen-Hohl-Strahl eine Änderung des rho-R-Kriterium zur Folge, das Pellet müsste nicht so stark komprimiert werden wie bisher vermutet, so daß die technischen Voraussetzungen für ein Fusionsbrennen vieleicht schneller realisiert werden können, als bisher angenommen.