Physik
Refine
Year of publication
Document Type
- Article (1577)
- Preprint (1337)
- Doctoral Thesis (374)
- Conference Proceeding (232)
- diplomthesis (100)
- Bachelor Thesis (66)
- Master's Thesis (49)
- Contribution to a Periodical (37)
- Diploma Thesis (34)
- Working Paper (31)
Keywords
- Kollisionen schwerer Ionen (47)
- heavy ion collisions (42)
- Quark-Gluon-Plasma (25)
- Heavy Ion Experiments (20)
- LHC (20)
- BESIII (18)
- equation of state (17)
- quark-gluon plasma (17)
- QGP (15)
- Hadron (14)
Institute
- Physik (3923)
- Frankfurt Institute for Advanced Studies (FIAS) (1242)
- Informatik (986)
- Präsidium (62)
- ELEMENTS (15)
- Biochemie und Chemie (13)
- Biowissenschaften (11)
- MPI für Biophysik (10)
- Helmholtz International Center for FAIR (9)
- Geowissenschaften (7)
The Born cross sections are measured for the first time for the processes e+e−→D∗+sD∗s0(2317)−+c.c. and e+e−→D∗+sDs1(2460)−+c.c. at the center-of-mass energy s√= 4.600~GeV, 4.612~GeV, 4.626~GeV, 4.640~GeV, 4.660~GeV, 4.68~GeV, and 4.700~GeV, and for e+e−→D∗+sDs1(2536)−+c.c. at s√= 4.660~GeV, 4.680~GeV, and 4.700~GeV, using data samples collected with the BESIII detector at the BEPCII collider. No structures are observed in cross-section distributions for any of the processes.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.
By analyzing an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the branching fraction of the D0→ρ−μ+νμ decay for the first time. We obtain BD0→ρ−μ+νμ=(1.35±0.09stat±0.09syst)×10−3. Combining with theoretical predictions, we extract the CKM matrix element |Vcd|=0.204±0.007stat±0.007syst±0.014theory. Using the world average of BD0→ρ−e+νe, we find a branching fraction ratio of BD0→ρ−μ+νμ/BD0→ρ−e+νe=0.90±0.11, which agrees with the theoretical expectation of lepton flavor universality within the uncertainty. Combining the world average of BD+→ρ0μ+νμ and the lifetimes of D0(+), we obtain a partial decay width ratio of ΓD0→ρ−μ+νμ/(2ΓD+→ρ0μ+νμ)=0.71±0.14, which is consistent with the isospin symmetry expectation of one within 2.1σ. For the reported values of BD0→ρ−μ+νμ/BD0→ρ−e+νe and ΓD0→ρ−μ+νμ/2ΓD+→ρ0μ+νμ, the uncertainty is the quadratic sum of the statistical and systematic uncertainties.
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb−1, collected by the BESIII detector in the energy region between 4600 MeV and 4699 MeV, we report the first observations of the Cabibbo-suppressed decays Λ+c→nπ+π0, Λ+c→nπ+π−π+, and the Cabibbo-favored decay Λ+c→nK−π+π+ with statistical significances of 7.9σ, 7.8σ, and >10σ, respectively. The branching fractions of these decays are measured to be B(Λ+c→nπ+π0)=(0.64±0.09±0.02)%, B(Λ+c→nπ+π−π+)=(0.45±0.07±0.03)%, and B(Λ+c→nK−π+π+)=(1.90±0.08±0.09)%, where the first uncertainties are statistical and the second are systematic. We find that the branching fraction of the decay Λ+c→nπ+π0 is about one order of magnitude higher than that of Λ+c→nπ+.
The energy-dependent cross section for e+e−→ηψ(2S) is measured at eighteen center of mass energies from 4.288 GeV to 4.951 GeV using the BESIII detector. Using the same data samples, we also perform the first search for the reaction e+e−→ηX~(3872), but no evidence is found for the X~(3872) in the π+π−J/ψ mass distribution. At each of the eighteen center of mass energies, upper limits at the 90\% confidence level on the cross section for e+e−→ηψ(2S) and on the product of the e+e−→ηX~(3872) cross section with the branching fraction of X~(3872)→π+π−J/ψ are reported.
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π0 and K0S production as a function of hadron momentum, normalized by the total cross section of the e+e−→ hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results with a relative hadron energy coverage from 0.1 to 0.9 significantly deviate from several theoretical calculations based on existing fragmentation functions, especially at lower energies.
Using 7.93 fb−1 of e+e− collision data collected at the center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the absolute branching fractions of D0→K−e+νe, D0→K−μ+νμ, D+→K¯0e+νe, and D+→K¯0μ+νμ to be (3.509±0.009stat.±0.013syst.)%, (3.408±0.011stat.±0.013syst.)%, (8.856±0.039stat.±0.078syst.)%, and (8.661±0.046stat.±0.080syst.)%, respectively. By performing a simultaneous fit to the partial decay rates of these four decays, the product of the hadronic form factor fK+(0) and the modulus of the c→s CKM matrix element |Vcs| is determined to be fK+(0)|Vcs|=0.7162±0.0011stat.±0.0012syst.. Taking the value of |Vcs|=0.97349±0.00016 from the standard model global fit or that of fK+(0)=0.7452±0.0031 from the LQCD calculation as input, we derive the results fK+(0)=0.7357±0.0011stat.±0.0012syst. and |Vcs|=0.9611±0.0015stat.±0.0016syst.±0.0040LQCD.
The decay 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is searched for through the radiative transition 𝜓(3686)→𝛾𝜂𝑐(2𝑆) using 448 million 𝜓(3686) events accumulated at the BESIII detector. The first evidence of 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is found with a statistical significance of 3.5𝜎. The product of the branching fractions of 𝜓(3686)→𝛾𝜂𝑐(2𝑆) and 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is measured to be Br(𝜓(3686)→𝛾𝜂𝑐(2𝑆))×Br(𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂)=(2.97±0.81±0.26)×10−6, where the first uncertainty is statistical and the second one is systematic. The branching fraction of the decay 𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂 is determined to be Br(𝜂𝑐(2𝑆)→𝜋+𝜋−𝜂)=(42.4±11.6±3.8±30.3)×10−4, where the third uncertainty is transferred from the uncertainty of the branching fraction of 𝜓(3686)→𝛾𝜂𝑐(2𝑆).
The decay $\eta_c(2S)\to\pipieta$ is searched for through the radiative transition ψ(3686)→γηc(2S) using 448 million ψ(3686) events accumulated at the BESIII detector. The first evidence of ηc(2S)→π+π−η is found with a statistical significance of 3.5σ. The product of the branching fractions of ψ(3686)→γηc(2S) and $\eta_c(2S)\to\pipieta$ is measured to be $Br(\psi(3686)\to\gamma\eta_c(2S))\times Br(\eta_c(2S)\to\pipieta)=(2.97\pm0.81\pm0.26)\times10^{-6}$, where the first uncertainty is statistical and the second one is systematic. The branching fraction of the decay $\eta_c(2S)\to\pipieta$ is determined to be $Br(\eta_c(2S)\to\pipieta)=(42.4\pm11.6\pm3.8\pm30.3)\times10^{-4}$, where the third uncertainty is transferred from the uncertainty of the branching fraction of ψ(3686)→γηc(2S).