Konzeptionelle Untersuchungen für die HADES-Driftkammern am Prototyp 0
- Mit dem Dileptonenspektrometer HADES (High Acceptance Di-Electron Spectrometer) sollen Dielektronen, die bei zentralen Au+Au-Kollisionen der Energie von bis zu 2 GeV/u entstehen, spektroskopiert werden. Zentrale Detektorkomponente ist ein Magnetspektrometer, bestehend aus einem toroidalem Magnetfeld und 24 Driftkammern, die zur Orts- und Impulsbestimmung durch Ablenkung im Magnetfeld verwendet werden. Hohe Raten minimal ionisierender Teilchen, eine Massenauflösung von 1% im Massenbereich von 800 (MeVc) exp -2 sowie eine sichere Signalerkennung und -zuordnung stellen höchste Anforderungen an das Spektrometer, insbesondere an die Driftkammern. Ziel dieser Arbeit ist das grundlegende Verständnis der Funktionsweise der Driftkammern, die bei HADES eingesetzt werden, dazu gehört: (a): das physikalische Verständnis der Funktionsweise, insbesondere - die genaue Kenntnis des Feldverlaufs innerhalb der Kammern, sowie die Eigenschaften des verwendeten Driftkammergases und - die Bestimmung des theoretisch maximal erreichbaren Ortsauflösungsvermögens der Driftkammern, (b): die technische Seite, die den Aufbau der Driftkammern untersucht. Dies ist besonders wichtig, da in den HADES-Simulationsrechnungen aufgrund der großen Anzahl individueller Drähte mit Folien äquivalenter Massen gerechnet wurde. Hilfsmittel zur Untersuchung dieser Fragestellungen waren einerseits Programme, die Monte-Carlo-Methoden verwenden, andererseits Experimente, die an einem Prototyp der HADES-Driftkammern durchgeführt wurden, wobei jedoch der Schwerpunkt dieser Arbeit auf den Simulationrechnungen liegt. Kapitel 1 gibt einen Überblick über die physikalische Motivation von HADES und beschreibt kurz die einzelnen Komponenten des Spektrometers und die Driftkammerphysik. Kapitel 2 geht auf den Aufbau der HADES-Driftkammern ein und stellt die mit Hilfe von Simulationsrechnungen gewonnenen Erkenntnisse über die Kammern vor. Kapitel 3 behandelt die Bestimmung der intrinsischen Auflöosung der Prototyp-Driftkammer. Da dies allein mit Hilfe von Quellenmessungen aufgrund der Vielfachstreuung nicht möglich ist, wurde der Anteil an Vielfachstreuung mit Simulationsrechnungen bestimmt. Kapitel 4 vergleicht die Erkenntnisse über das Verhalten der Driftkammern, die in Kapitel 2 gewonnen wurden, mit einem am SIS (Schwerionen-Synchrotron) gemachten Experiment. Abschließend wird das Modell einer Driftkammer mit realen Drähten mit dem Modell einer Driftkammer verglichen, in der die Drähte durch Folien äquivalenter Massenbelegung ersetzt wurden.