Isotopic effect in b-like and be-like argon ions

  • In the present work, the Heidelberg electron beam ion trap (EBIT) at the Max-Planck-Institute für Kernphysik (MPIK) has been used to produce, trap highly charged argon ions and study their magnetic dipole (M1) forbidden transitions. These transitions are of relativistic origin and, hence, provide unique possibilities to perform precise studies of relativistic effects in many electron systems. In this way, the transitions energies of the 1s22s22p for the 2P3/2 - 2P1/2 transition in Ar13+ and the 1s22s2p for the 3P1 - 3P2 transition in Ar14+, for 36Ar and 40Ar isotopes were compared. The observed isotopic effect has confirmed the relativistic nuclear recoil effect corrections due to the finite nuclear mass in a recent calculation made by Tupitsyn [TSC03], in which major inconsistencies of earlier theoretical methods have been corrected for the first time. The finite mass, or recoil effect, composed of the normal mass shift (NMS), and the specific mass shift (SMS) were corrected for relativistic contributions, RNMS and RSMS. The present experimental results have shown that the recoil effects on the Breit level are indeed very important, as well as the effects of the correlated relativistic dynamics in a many electron ion.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Rosario Soria Orts
Referee:Reinhard DörnerORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2006/02/24
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/02/17
Release Date:2006/02/24
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht