Virtual screening of potential bioactive substances using the support vector machine approach

  • Die vorliegende Dissertation stellt eine kumulative Arbeit dar, die in insgesamt acht wissenschaftlichen Publikationen (fünf publiziert, zwei eingerichtet und eine in Vorbereitung) dargelegt ist. In diesem Forschungsprojekt wurden Anwendungen von maschinellem Lernen für das virtuelle Screening von Moleküldatenbanken durchgeführt. Das Ziel war primär die Einführung und Überprüfung des Support-Vector-Machine (SVM) Ansatzes für das virtuelle Screening nach potentiellen Wirkstoffkandidaten. In der Einleitung der Arbeit ist die Rolle des virtuellen Screenings im Wirkstoffdesign beschrieben. Methoden des virtuellen Screenings können fast in jedem Bereich der gesamten pharmazeutischen Forschung angewendet werden. Maschinelles Lernen kann einen Einsatz finden von der Auswahl der ersten Moleküle, der Optimierung der Leitstrukturen bis hin zur Vorhersage von ADMET (Absorption, Distribution, Metabolism, Toxicity) Eigenschaften. In Abschnitt 4.2 werden möglichen Verfahren dargestellt, die zur Beschreibung von chemischen Strukturen eingesetzt werden können, um diese Strukturen in ein Format zu bringen (Deskriptoren), das man als Eingabe für maschinelle Lernverfahren wie Neuronale Netze oder SVM nutzen kann. Der Fokus ist dabei auf diejenigen Verfahren gerichtet, die in der vorliegenden Arbeit verwendet wurden. Die meisten Methoden berechnen Deskriptoren, die nur auf der zweidimensionalen (2D) Struktur basieren. Standard-Beispiele hierfür sind physikochemische Eigenschaften, Atom- und Bindungsanzahl etc. (Abschnitt 4.2.1). CATS Deskriptoren, ein topologisches Pharmakophorkonzept, sind ebenfalls 2D-basiert (Abschnitt 4.2.2). Ein anderer Typ von Deskriptoren beschreibt Eigenschaften, die aus einem dreidimensionalen (3D) Molekülmodell abgeleitet werden. Der Erfolg dieser Beschreibung hangt sehr stark davon ab, wie repräsentativ die 3D-Konformation ist, die für die Berechnung des Deskriptors angewendet wurde. Eine weitere Beschreibung, die wir in unserer Arbeit eingesetzt haben, waren Fingerprints. In unserem Fall waren die verwendeten Fingerprints ungeeignet zum Trainieren von Neuronale Netzen, da der Fingerprintvektor zu viele Dimensionen (~ 10 hoch 5) hatte. Im Gegensatz dazu hat das Training von SVM mit Fingerprints funktioniert. SVM hat den Vorteil im Vergleich zu anderen Methoden, dass sie in sehr hochdimensionalen Räumen gut klassifizieren kann. Dieser Zusammenhang zwischen SVM und Fingerprints war eine Neuheit, und wurde von uns erstmalig in die Chemieinformatik eingeführt. In Abschnitt 4.3 fokussiere ich mich auf die SVM-Methode. Für fast alle Klassifikationsaufgaben in dieser Arbeit wurde der SVM-Ansatz verwendet. Ein Schwerpunkt der Dissertation lag auf der SVM-Methode. Wegen Platzbeschränkungen wurde in den beigefügten Veröffentlichungen auf eine detaillierte Beschreibung der SVM verzichtet. Aus diesem Grund wird in Abschnitt 4.3 eine vollständige Einführung in SVM gegeben. Darin enthalten ist eine vollständige Diskussion der SVM Theorie: optimale Hyperfläche, Soft-Margin-Hyperfläche, quadratische Programmierung als Technik, um diese optimale Hyperfläche zu finden. Abschnitt 4.3 enthält auch eine Diskussion von Kernel-Funktionen, welche die genaue Form der optimalen Hyperfläche bestimmen. In Abschnitt 4.4 ist eine Einleitung in verschiede Methoden gegeben, die wir für die Auswahl von Deskriptoren genutzt haben. In diesem Abschnitt wird der Unterschied zwischen einer „Filter“- und der „Wrapper“-basierten Auswahl von Deskriptoren herausgearbeitet. In Veröffentlichung 3 (Abschnitt 7.3) haben wir die Vorteile und Nachteile von Filter- und Wrapper-basierten Methoden im virtuellen Screening vergleichend dargestellt. Abschnitt 7 besteht aus den Publikationen, die unsere Forschungsergebnisse enthalten. Unsere erste Publikation (Veröffentlichung 1) war ein Übersichtsartikel (Abschnitt 7.1). In diesem Artikel haben wir einen Gesamtüberblick der Anwendungen von SVM in der Bio- und Chemieinformatik gegeben. Wir diskutieren Anwendungen von SVM für die Gen-Chip-Analyse, die DNASequenzanalyse und die Vorhersage von Proteinstrukturen und Proteininteraktionen. Wir haben auch Beispiele beschrieben, wo SVM für die Vorhersage der Lokalisation von Proteinen in der Zelle genutzt wurden. Es wird dabei deutlich, dass SVM im Bereich des virtuellen Screenings noch nicht verbreitet war. Um den Einsatz von SVM als Hauptmethode unserer Forschung zu begründen, haben wir in unserer nächsten Publikation (Veröffentlichung 2) (Abschnitt 7.2) einen detaillierten Vergleich zwischen SVM und verschiedenen neuronalen Netzen, die sich als eine Standardmethode im virtuellen Screening etabliert haben, durchgeführt. Verglichen wurde die Trennung von wirstoffartigen und nicht-wirkstoffartigen Molekülen („Druglikeness“-Vorhersage). Die SVM konnte 82% aller Moleküle richtig klassifizieren. Die Klassifizierung war zudem robuster als mit dreilagigen feedforward-ANN bei der Verwendung verschiedener Anzahlen an Hidden-Neuronen. In diesem Projekt haben wir verschiedene Deskriptoren zur Beschreibung der Moleküle berechnet: Ghose-Crippen Fragmentdeskriptoren [86], physikochemische Eigenschaften [9] und topologische Pharmacophore (CATS) [10]. Die Entwicklung von weiteren Verfahren, die auf dem SVM-Konzept aufbauen, haben wir in den Publikationen in den Abschnitten 7.3 und 7.8 beschrieben. Veröffentlichung 3 stellt die Entwicklung einer neuen SVM-basierten Methode zur Auswahl von relevanten Deskriptoren für eine bestimmte Aktivität dar. Eingesetzt wurden die gleichen Deskriptoren wie in dem oben beschriebenen Projekt. Als charakteristische Molekülgruppen haben wir verschiedene Untermengen der COBRA Datenbank ausgewählt: 195 Thrombin Inhibitoren, 226 Kinase Inhibitoren und 227 Faktor Xa Inhibitoren. Es ist uns gelungen, die Anzahl der Deskriptoren von ursprünglich 407 auf ungefähr 50 zu verringern ohne signifikant an Klassifizierungsgenauigkeit zu verlieren. Unsere Methode haben wir mit einer Standardmethode für diese Anwendung verglichen, der Kolmogorov-Smirnov Statistik. Die SVM-basierte Methode erwies sich hierbei in jedem betrachteten Fall als besser als die Vergleichsmethoden hinsichtlich der Vorhersagegenauigkeit bei der gleichen Anzahl an Deskriptoren. Eine ausführliche Beschreibung ist in Abschnitt 4.4 gegeben. Dort sind auch verschiedene „Wrapper“ für die Deskriptoren-Auswahl beschrieben. Veröffentlichung 8 beschreibt die Anwendung von aktivem Lernen mit SVM. Die Idee des aktiven Lernens liegt in der Auswahl von Molekülen für das Lernverfahren aus dem Bereich an der Grenze der verschiedenen zu unterscheidenden Molekülklassen. Auf diese Weise kann die lokale Klassifikation verbessert werden. Die folgenden Gruppen von Moleküle wurden genutzt: ACE (Angiotensin converting enzyme), COX2 (Cyclooxygenase 2), CRF (Corticotropin releasing factor) Antagonisten, DPP (Dipeptidylpeptidase) IV, HIV (Human immunodeficiency virus) protease, Nuclear Receptors, NK (Neurokinin receptors), PPAR (peroxisome proliferator-activated receptor), Thrombin, GPCR und Matrix Metalloproteinasen. Aktives Lernen konnte die Leistungsfähigkeit des virtuellen Screenings verbessern, wie sich in dieser retrospektiven Studie zeigte. Es bleibt abzuwarten, ob sich das Verfahren durchsetzen wird, denn trotzt des Gewinns an Vorhersagegenauigkeit ist es aufgrund des mehrfachen SVMTrainings aufwändig. Die Publikationen aus den Abschnitten 7.5, 7.6 und 7.7 (Veröffentlichungen 5-7) zeigen praktische Anwendungen unserer SVM-Methoden im Wirkstoffdesign in Kombination mit anderen Verfahren, wie der Ähnlichkeitssuche und neuronalen Netzen zur Eigenschaftsvorhersage. In zwei Fällen haben wir mit dem Verfahren neuartige Liganden für COX-2 (cyclooxygenase 2) und dopamine D3/D2 Rezeptoren gefunden. Wir konnten somit klar zeigen, dass SVM-Methoden für das virtuelle Screening von Substanzdatensammlungen sinnvoll eingesetzt werden können. Es wurde im Rahmen der Arbeit auch ein schnelles Verfahren zur Erzeugung großer kombinatorischer Molekülbibliotheken entwickelt, welches auf der SMILES Notation aufbaut. Im frühen Stadium des Wirstoffdesigns ist es wichtig, eine möglichst „diverse“ Gruppe von Molekülen zu testen. Es gibt verschiedene etablierte Methoden, die eine solche Untermenge auswählen können. Wir haben eine neue Methode entwickelt, die genauer als die bekannte MaxMin-Methode sein sollte. Als erster Schritt wurde die „Probability Density Estimation“ (PDE) für die verfügbaren Moleküle berechnet. [78] Dafür haben wir jedes Molekül mit Deskriptoren beschrieben und die PDE im N-dimensionalen Deskriptorraum berechnet. Die Moleküle wurde mit dem Metropolis Algorithmus ausgewählt. [87] Die Idee liegt darin, wenige Moleküle aus den Bereichen mit hoher Dichte auszuwählen und mehr Moleküle aus den Bereichen mit niedriger Dichte. Die erhaltenen Ergebnisse wiesen jedoch auf zwei Nachteile hin. Erstens wurden Moleküle mit unrealistischen Deskriptorwerten ausgewählt und zweitens war unser Algorithmus zu langsam. Dieser Aspekt der Arbeit wurde daher nicht weiter verfolgt. In Veröffentlichung 6 (Abschnitt 7.6) haben wir in Zusammenarbeit mit der Molecular-Modeling Gruppe von Aventis-Pharma Deutschland (Frankfurt) einen SVM-basierten ADME Filter zur Früherkennung von CYP 2C9 Liganden entwickelt. Dieser nichtlineare SVM-Filter erreichte eine signifikant höhere Vorhersagegenauigkeit (q2 = 0.48) als ein auf den gleichen Daten entwickelten PLS-Modell (q2 = 0.34). Es wurden hierbei Dreipunkt-Pharmakophordeskriptoren eingesetzt, die auf einem dreidimensionalen Molekülmodell aufbauen. Eines der wichtigen Probleme im computerbasierten Wirkstoffdesign ist die Auswahl einer geeigneten Konformation für ein Molekül. Wir haben versucht, SVM auf dieses Problem anzuwenden. Der Trainingdatensatz wurde dazu mit jeweils mehreren Konformationen pro Molekül angereichert und ein SVM Modell gerechnet. Es wurden anschließend die Konformationen mit den am schlechtesten vorhergesagten IC50 Wert aussortiert. Die verbliebenen gemäß dem SVM-Modell bevorzugten Konformationen waren jedoch unrealistisch. Dieses Ergebnis zeigt Grenzen des SVM-Ansatzes auf. Wir glauben jedoch, dass weitere Forschung auf diesem Gebiet zu besseren Ergebnissen führen kann.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Evgeny Byvatov
URN:urn:nbn:de:hebis:30-23671
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2006/01/11
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/11/24
Release Date:2006/01/11
HeBIS-PPN:135139406
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht