Regulation of endothelial nitric oxide synthase by phosphorylation

  • Since its recognition as an endothelium-derived relaxing factor, the control and consequences of nitric oxide (NO) production have been investigated intensely. We know now that NO is not simply a vasodilator or regulator of smooth muscle tone but is a potent anti-platelet agent, neuromodulator and regulator of gene expression. NO is synthesized from the amino acid Larginine by a family of enzymes termed NO synthases (NOS). The ‘endothelial’ (eNOS or NOS III) and ‘neuronal’ (nNOS, NOS I or bNOS) NOS isoforms, which were named after the tissues in which they were first identified, are expressed constitutively and are generally regulated by Ca2+/calmodulin (CaM). Endothelium-derived NO is thought to be responsible for maintaining the vasculature in an anti-atherosclerotic state and a decrease in the bioavailability of NO (a state generally referred to as endothelial dysfunction) results in “proatherosclerotic” alterations in vascular gene expression. Recently it has become clear that the activity of eNOS is largely determined by its association with regulatory proteins as well as by the phosphorylation of the enzyme on serine, threonine and possibly tyrosine residues. Moreover, the enzyme can be “uncoupled” i.e. transformed from a NO generating to a superoxide (O2-)-generating enzyme, which would be expected to attenuate vasodilator responses and enhance vascular inflammation. The aim of this thesis was to study the consequences of phosphorylation on specific serine, threonine and tyrosine residues on the activity and intracellular localisation of eNOS and in particular to determine whether a phospho-switch for eNOS uncoupling exists. eNOS is phosphorylated under basal conditions and its serine phosphorylation can be enhanced following cell stimulation with hemodynamic stimuli such as cyclic stretch and fluid shear stress as well as by hormonal stimuli such as histamine and bradykinin. Our group has previously demonstrated the importance of Ser1177 in the activation of eNOS and here I set out to determine the relative importance of phosphorylation on Ser633 and Ser114. By generating point mutants in which serine was replaced by either alanine (nonphosphorylatable mutants) or aspartate (phosphomimetic mutants) it was observed that the activity of the S633D and S114A eNOS mutants exhibited an 2-fold increase over the activity of the wild-type enzyme or either of the S633/634A or S114D eNOS mutants as determined by monitoring the conversion of L-arginine to L-citrulline. eNOS is basally phosphorylated on Thr495 and stimulation of endothelial cells with Ca2+-elevating agonists generally results in the transient dephosphorylation of this residue. The latter is essential to allow the binding of calmodulin to the enzyme and is the actually initiating step in the generation of NO. Correspondingly, the T495A eNOS mutant can be activated at lower Ca2+ and calmodulin concentrations than the T495D mutant. However, some eNOS mutants (T494A/S1177D and T495A) showed an enhanced ability to generate O2- in a NOS inhibitor-sensitive manner suggesting that the phosphorylation of the enzyme may also play a role in the uncoupling process. To determine the physiological relevance of eNOS dephosphorylation on Thr495 we assessed the consequences of treating cells with oxidised low-density lipoprotein (ox-LDL) on eNOS phosphorylation as well as on the eNOS-dependent generation of NO and O2-. Oxidised LDL concentration- and time-dependently decreased phosphorylation of eNOS on Thr495 and led to a concomitant decrease in cellular levels of cyclic GMP and an enhanced production of O2 - compared to cells treated with native LDL. Alterations in the activity of protein kinase C (PKC) were related to the change in eNOS Thr495 phosphorylation. There was not only the basal activity of PKCα inhibited by ox-LDL but the PKC activator phorbol-12-myristate-13-acetate also failed to elicit the phosphorylation of Thr495 in ox-LDL-treated endothelial cells. The dephosphorylation of eNOS on Thr495 in response to the addition of ox-LDL was not associated with an increase in the binding of calmodulin to eNOS, an association usually necessary for the activation of eNOS. Moreover, following treatment with ox-LDL for 24 hours eNOS was no longer detected at the plasma membrane but was redistributed to the cytosol indicating that ox-LDL may disrupt the eNOS signalling complex or signalosome. To date the role played by the tyrosine phosphorylation of eNOS in the regulation of its activity or intracellular association is controversial. However, during the preparation of this thesis we have been able to demonstrate a link between the tyrosine phosphorylation of eNO and the activation of the tyrosine kinases Src and PYK2. The application of fluid shear stress to endothelial cells resulted in the activation of Src and PYK2 as well as in the association of PYK2 with eNOS. Co-expression of eNOS and PYK2 led to the putative identification of Tyr657 as a potential modulatory site. Mutating eNOS at Tyr657 to Asp or Glu resulted in the localisation of the mutant eNOS predominantly in the cytoskeleton and also in a complete inactivation of the enzyme. The Y657F mutants, on the other hand, did not demonstrate any marked alteration in the activity when compared with the wild-type eNOS. However, the In conclusion, the results describe in this thesis indicate that eNOS is regulated by phosphorylation at multiple sites. Depending on the phosphorylation site involved phosphorylation can inhibit or activate NO production or even uncouple the enzyme so that it generates O2-. While the phosphor-status of eNOS on Ser114 and Ser633 influenced NO release they did not contribute to O2 - production and the dephosphorylation of Thr495 seems sufficient to uncouple eNOS. Cell treatment with ox-LDL, which is known to increase eNOS-derived O2- output was correlated with a dephosphorylation of Thr495 as well as a decrease in the activity of the kinase that phosphorylates this site i.e., PKCα. The phosphorylation status of all the eNOS serine and threonine residues studied however did not influence the ability of the enzyme to dimerise, indicating that contrary to previously published reports the eNOS dimer is highly stable in endothelial cells. The tyrosine phosphorylation of eNOS was not initially expected to play a determinant role in the regulation but rather to facilitate the docking of associated regulatory proteins. However, Tyr657 seems to play a critical role in the generation of NO as its mutation resulted in the generation of a completely inactive enzyme as well as in an apparent intracellular mislocalisation of the protein. The physiological relevance of these findings remain to be further elucidated.
  • Seit der Identifizierung des endothel-abhängigen, relaxierenden Faktors als Stickstoffmonoxid (NO) durch R. F. Furchgott und L. Ignarro im Jahre 1986 sind die Regulation und die funktionellen Konsequenzen der endothelialen NO-Produktion Gegenstand intensiver Forschung. Heute ist NO nicht nur als relaxierender Faktor für Gefäße bekannt, sondern auch als potenter Hemmer der Thrombozytenaggregation, als Neuromodulator sowie Regulator der Genexpression. Die Enzyme der Familie der NO-Synthasen bilden aus der Aminosäure LArginin, NO und L-Citrullin. Die endotheliale und neuronale NO-Synthase, die nach den Geweben, in welchen sie zuerst gefunden wurden, benannt sind, sind konstitutiv exprimiert und werden vor allem über Ca2+/Calmodulin aktiviert. Als wichtigste Funktion von endothelial gebildetem NO wird derzeit angesehen, dass es eine protektive, antiatherosklerotische Wirkung auf die Gefäßwand ausübt. Eine Verminderung der Bioverfügbarkeit von NO (allgemein als endotheliale Dysfunktion bezeichnet) führt zur Expression von pro-atherosklerotischen Genen. Es wurde gezeigt, dass die Aktivität der NOSynthasen von der Interaktion mit regulatorischen Proteinen und von der Phosphorylierung des Enzyms an Serin-, Threonin- und möglicherweise auch Tyrosinresten abhängt. Außerdem kann das Enzym entkoppelt werden, was bedeutet, dass nicht NO sondern Superoxidanionen (O2-) gebildet werden, welche dann die vasodilatierende Wirkung von NO einschränken und inflammatorische Antworten verstärken. Das Ziel dieser Dissertation war es, die Konsequenzen der Phosphorylierung der endothelialen NOS (eNOS) an Serin-, Threonin- und auch Tyrosinresten auf die Aktivität und intrazelluläre Lokalisation zu untersuchen, vor allem mit der Frage, inwieweit eine Phosphorylierung für die Entkopplung des Enzyms mitverantwortlich ist. Die schon unter basalen Bedingungen beobachtbare Phosphorylierung der eNOS an Serinresten kann durch hämodynamische Stimuli wie Schubspannung oder rhythmische Dehnung der Gefäßwand bzw. der Endothelzellen sowie durch agonisten-vermittelte Stimulation mit Histamin oder Bradykinin erhöht werden. Unsere Gruppe hat vor kurzem die Bedeutung der Phosphorylierung von Ser1177 für die Ca2+-unabhängige Aktivierung der eNOS gezeigt. In der vorliegenden Arbeit wurde die Relevanz der Phosphorylierungen von Ser633 und Ser114 untersucht. Durch gerichtete Punktmutagenese („site-directed mutagenesis“) wurden Mutanten erstellt, in denen die entsprechenden Serinreste zu Alanin (nicht phosphorylierbare Mutante, A) bzw. zu Aspartat (phosphomimetische Mutante, D) mutiert sind. Die Aktivität der überexprimierten eNOS-Mutanten wurde in-vivo und in-vitro durch die Bildung von L-Citrullin aus L-Arginin bestimmt, die Menge an gebildetem NO oder O2- durch Elektron-Spin Resonanz (ESR) Analysen ermittelt. Hierbei wurde gefunden, dass die Aktivität der S114A- bzw. der S633D-Mutanten um das zweifache gegenüber der Aktivität des Wildtyps oder der S114D- bzw. der S633/634A-Mutanten erhöht waren, die Bildung von O2- dieser Mutanten jedoch gleich war wie beim Wildtype In nicht-stimulierten Zellen ist die eNOS auch am Thr495 phosphoryliert und die Stimulation mit Ca2+-erhöhenden Agonisten führt zu einer transienten Dephosphorylierung dieses Aminosäurerestes. Dies ermöglicht erst die Bindung von Calmodulin beim initialen Schritt der NO-Bildung. Dementsprechend kann die T495A-Mutante im Vergleich zur T495D-Mutante bei niedrigeren Ca2+-Konzentrationen aktiviert werden. Bei den Mutanten, bei denen Thr495 nicht phosphorylierbar ist (T495A und T495A/S1177D), wurde eine Erhöhung der O2-Bildung beobachtet, die sensitiv gegenüber NOS-Inhibitoren war, was auf eine Funktion der Thr495-Phosphorylierung auch für die Entkopplung der eNOS deutet. Die Stimulation von Endothelzellen mit oxidiertem „low-density lipoprotein“ (ox-LDL) führt bekanntermaßen zur eNOS-vermittelten Radikalbildung. Die Bedeutung der Thr495-Phosphorylierung für diese Beobachtung wurde mittels Western-Blot-Analysen sowie Bestimmung der NO- und O2-Bildung ermittelt. Die Behandlung von Endothelzellen mit ox-LDL führte zu einer konzentrations- und zeitabhängigen Erniedrigung der Thr495-Phosphorylierung, die mit einer verringerten intrazellulären cGMP-Konzentration einherging. Zugleich war die O2-Produktion gesteigert im Vergleich zu Zellen, die mit nativem LDL inkubiert wurden. Vor allem die Proteinkinase C (PKC) ist für die Thr495-Phosphorylierung verantwortlich und die Verringerung der eNOS Phosphorylierung am Thr495 korrelierte nicht nur mit der Hemmung der basalen PKCα Aktivität durch ox-LDL, sondern auch der PKC-Aktivator 12-Myristat-13-Acetat konnte in ox-LDL-behandelten Endothelzellen keine Phosphorylierung am Thr495 vermitteln. Allerdings führte die Dephosphorylierung des Thr495-Restes nicht zur erhöhten Bindung von Calmodulin an die eNOS, was bei Agonisten-Stimulation zu beobachten ist und hier den initialen Schritt zur NO-Bildung darstellt. Außerdem konnte mittels Immunhistochemie gezeigt werden, dass in Endothelzellen, die über 24 Stunden mit ox-LDL inkubiert worden waren, die eNOS nicht mehr an der Plasmamembran lokalisiert war, sondern ins Zytosol translozierte. Dies deutet auf eine Zerstörung des „eNOS Signalosoms“ durch ox-LDL hin....

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Annisuddin Mohamed
URN:urn:nbn:de:hebis:30-31766
Place of publication:Frankfurt am Main
Referee:Ingrid FlemingORCiDGND
Advisor:Rudi Busse
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2007/06/01
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/12/22
Release Date:2007/06/01
Page Number:133
First Page:1
Last Page:125
HeBIS-PPN:187247315
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht