Chemische Ansätze zur Neuordnung des Solarzellenprozesses ausgehend vom Wafering bis hin zur Emitterdiffusion

  • Die vorliegende Arbeit ist aus drei Teilen aufgebaut. Im ersten, relativ kurz gehaltenen Kapitel wird die klassische Standard-Industrie-Solarzelle auf der Basis monokristallinen Siliziums vorgestellt. Der bisherige Herstellungsprozess der Standard-Industrie-Solarzelle, der in wesentlichen Teilen darauf abzielt, diese Verluste zu minimieren, dient als Referenz für die Entwicklung neuer Fertigungsverfahren, wie sie in den Kapiteln 2 und 3 dieser Arbeit vorgestellt werden. Den ersten thematischen Schwerpunkt dieser Arbeit bildet die Entwicklung eines alternativen Wafering-Konzeptes zum Multi-Drahtsägen, der klassischen Technologie zur Fertigung von Silizium-Wafern. Die Basis des neuen, hier vorgestellten Wafering-Prozesses bildet das Laser-Micro-Jet-Verfahren (LMJTM). Dieses System besitzt eine Reihe von Vorteilen gegenüber klassischen „trockenen“ Laserverfahren. Das ursprünglich auf reinem, deionisiertem Wasser als Strahlmedium aufbauende System wurde im Rahmen dieser Arbeit so modifiziert, dass der Flüssigkeitsstrahl nunmehr nicht nur als flüssiger Lichtleiter dient, sondern gleichzeitig auch als Transportmedium für Ätzmittel, welche den thermischen Abtrag des Siliziums durch den Laserstrahl unterstützen. Ausgehend vom aus der Literatur bekannten chemischen Verhalten des Siliziums wurden 3 Ätzsysteme für Silizium vorgestellt. Dabei wurden Vor- und Nachteile für deren technischen Einsatz diskutiert. Den praktischen Teil dieses Arbeitspaketes bildete der Test zweier Ätzmedien im Experiment. Dabei konnte gezeigt werden, dass wasserfreie Strahlmedien basierend auf perfluorierten Lösemitteln mit bereits sehr geringen Zusätzen gasförmigen Chlors als Ätzmittel für Silizium wässrigen alkalischen Ätzsystemen jeder Konzentration prinzipiell überlegen sind- Parallel zur Evaluation des Einflusses der chemischen Beschaffenheit des Flüssigkeitsstrahls auf den Abtragsprozess fand auch eine Untersuchung verschiedener Prozessparametereinflüsse statt, etwa der Laserleistung, der Laserlichtwellenlänge, etc. Den zweiten thematischen Schwerpunkt der Arbeit bildet die Modifizierung der nasschemischen Schritte zwischen dem Wafering und dem ersten Hochtemperatur-Fertigungsschritt in der Solarzellen-Produktion, der Emitterdiffusion. Diese nasschemischen Schritte umfassen bei der Standard-Industrie-Solarzelle in der Regel eine zum Teil aufwändige Reinigung der Wafer-Oberflächen von partikulären und metallischen Kontaminationen, die vor allem vom Wafering-Prozess herrühren, als auch eine Texturierung der Substrate. Kernanliegen des praktischen Teils dieses Arbeitspaketes ist zum einen die Suche nach alternativen Texturmitteln zum 2-Propanol, dem klassischen Badadditiv in basischen Ätzbädern, das in der Praxis über zahlreiche Nachteile verfügt, etwa einem relativ niedrigen Siedepunkt, der zu seinem permanenten Ausgasen aus der Lösung führt. Zum anderen sollte der auf die Textur folgende Reinigungsprozess rationalisiert werden, um Prozesskosten zu minimieren, entweder durch eine Straffung des Prozesses durch Verringerung des Chemikalienverbrauchs und einer Reduzierung der Prozesszeit oder durch eine Verringerung der Chemikalienkosten. Bei der Suche nach neuen Texturmitteln wurden 45 verschiedene organische Substanzen verschiedener Verbindungsklassen hinsichtlich ihrer Texturwirkung auf monokristallinen Silizium-substraten getestet. Mit 1-Pentanol und p-Toluolsulfonsäure wurden zwei Substanzen ermittelt, welche in der Zukunft als praktikable Alternativen zu 2-Propanol als Texturadditive dienen könnten. Im Kontext der Suche nach neuen Reinigungsverfahren wurden eine Reihe verschiedener neuer Reinigungssequenzen getestet, die sich entweder durch veränderte - in der Regel verringerte - Badkonzentrationen, durch neue Badsequenzen, welche auf bestimmte Teilschritte verzichten oder durch neue Badkompositionen, etwa durch Hinzuziehen von Komplexbildnern für metallische Verunreinigungen von den klassischen Reinigungsprozessen unterscheiden. Der Erfolg des Reinigungseffektes der nasschemischen Sequenzen wurde anhand der Ladungsträger-Lebensdauer in den Wafern abgeschätzt. Dabei konnte gezeigt werden, dass mit Hilfe von LMJ produzierte (gelaserte) Wafer-Oberflächen wesentlich straffere Reinigungsprozesse erfordern als drahtgesägte Substrate. Neben einer deutlichen Straffung des Reinigungsprozesses ist auch eine Verkürzung der Texturzeit bei den mit Lasern geschnittenen Oberflächen möglich, die wiederum ihren Grund im geringeren Schädigungsgrad dieser Oberflächen hat, der einen geringeren Materialabtrag durch die Ätzbäder erfordert, als bei drahtgesägten Wafern. Abschließend konnte noch gezeigt werden, dass drahtgesägte Substrate, die bei gleicher Prozesszeit mit den neuen Texturmitteln prozessiert wurden, über erheblich höhere mechanische Stabilitäten verfügen, als jene, bei denen das klassische Texturmittel 2-Propanol eingesetzt wurde.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kuno Mayer
URN:urn:nbn:de:hebis:30-72869
Referee:Bernd O. Kolbesen
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/12/04
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/11/06
Release Date:2009/12/04
HeBIS-PPN:220357374
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht