Spectrum and wave functions of excited states in lattice gauge theory

  • We suggest a new method to compute the spectrum and wave functions of excited states. We construct a stochastic basis of Bargmann link states, drawn from a physical probability density distribution and compute transition amplitudes between stochastic basis states. From such transition matrix we extract wave functions and the energy spectrum. We apply this method toU(1)2+1 lattice gauge theory. As a test we compute the energy spectrum, wave functions and thermodynamical functions of the electric Hamiltonian and compare it with analytical results. We find excellent agreement. We observe scaling of energies and wave functions in the variable of time. We also present first results on a small lattice for the full Hamiltonian including the magnetic term.

Download full text files

Export metadata

Metadaten
Author:Helmut Kröger, Ahmad Hosseinizadeh, Jean-François Laprise, Jens Kröger
URN:urn:nbn:de:hebis:30-60919
URL:https://pos.sissa.it/066/235/pdf
ISSN:1824-8039
Parent Title (English):Proceedings of Science
Publisher:SISSA
Place of publication:Trieste
Document Type:Article
Language:English
Year of Completion:2008
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Creating Corporation:The XXVI International Symposium on Lattice Field Theory, July 14-19 2008, Williamsburg, Virginia, USA
Release Date:2010/09/06
Volume:2008
Issue:(LATTICE 2008)235
Page Number:7
First Page:1
Last Page:7
Note:
Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
Source:PoS LATTICE 2008 (2008) pp.235 ; 26th International Symposium on Lattice Field Theory, Williamsburg, VA, USA, 14 - 19 Jul 2008, pp.235
HeBIS-PPN:226649172
Institutes:Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen