Linear filtering with fractional Brownian motion in the signal and observation processes

  • Integral equations for the mean-square estimate are obtained for the linear filtering problem, in which the noise generating the signal is a fractional Brownian motion with Hurst index h∈(3/4,1) and the noise in the observation process includes a fractional Brownian motion as well as a Wiener process. AMS subject classifications: 93E11, 60G20, 60G35.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marina L. Kleptsyna, Peter E. Kloeden, Vo Van Anh
URN:urn:nbn:de:hebis:30:3-243383
DOI:https://doi.org/10.1155/S1048953399000076
ISSN:1048-9533
Parent Title (English):Journal of applied mathematics and stochastic analysis
Publisher:Hindawi
Place of publication:New York, NY
Document Type:Article
Language:English
Year of Completion:2012
Year of first Publication:1999
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2012/05/31
Tag:Fractional Brownian Motion; Linear Filtering; Long- Range Dependence; Optimal Mean-Square Filter
Volume:12
Issue:1
Page Number:6
First Page:85
Last Page:90
Note:
Copyright © 1999 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/ , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
HeBIS-PPN:303720212
Institutes:Informatik und Mathematik / Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 3.0