Kurzzeitspektroskopische Untersuchungen an Flavoproteinen: Photoprotektion von Flavinen in Dodecinen und erste Schritte der Peptidfaltung
- Ziel dieser Arbeit war es zum einen Informationen über den Mechanismus in Dodecinproteinen zu gewinnen, der zu der effizienten Fluoreszenzlöschung von gebundenem Riboflavin und einer deutlichen Verlängerung der Lebendsdauer des Chromophors unter Lichteinwirkung führt. Zum anderen sollte mit Hilfe eines kurzen Modellpeptids, das eine Azobenzoleinheit als Photoschalter in seinem Peptidrückgrat enthielt, erste Schritte der Peptidfaltung untersucht werden.
Die Untersuchungen an Dodecinproteinen konzentrierten sich hauptsächlich auf archaeales Dodecin aus Halobacterium salinarum (HsDod). Eine Besonderheit der Dodecinproteine ist, dass sie im Gegensatz zu anderen Flavinbindeproteinen zwei Flavinmoleküle in jeder ihrer sechs identischen Bindetaschen einbauen können. Kurzzeitspektroskopische Untersuchungen im UV/vis-Spektralbereich zeigen, dass nach Photoanregung eines gebundenen Riboflavinmoleküls nach etwa 10 ps der Ausgangszustand wieder erreicht wird. Weiterhin zeigt das Fehlen der stimulierten Emission in den transienten Daten, dass bereits innerhalb der Zeitauflösung des Experiments, in weniger als 150 fs, der erste angeregte Zustand des Riboflavins entvölkert wird. Dies verhindert unerwünschte Reaktionen des Riboflavins und stellt eine Versorgung der Zelle mit diesem wichtigen Baustein für die Biosynthese von FMN und FAD sicher. Die Ergebnisse zeigen außerdem, dass zwei Spezies mit unterschiedlichen spektralen Signaturen und Lebensdauern an dem Löschungsmechanismus und der Wiedererlangung des Ausgangszustands beteiligt sind. Der Vergleich von HsDod-Proteinen in nicht-deuteriertem und deuteriertem Lösungsmittel sowie die spektrale Signatur der Spezies, die mit einer Zeitkonstante von etwa 800 fs zerfällt deuten an, dass ein Elektronen- sowie ein Protonentransfer Teil des Mechanismus sind. Mit Hilfe von HsDod-Proteinen, bei denen der Asparaginsäurerest unterhalb der Bindetasche, der für das Binden eines wasserkoordinierten Magnesiumions verantwortlich ist, gegen Serin (D41S) oder Glutaminsäure (D41E) ausgetauscht war, konnte gezeigt werden, dass das wasserkoordinierte Magnesiumion nicht relevant für den Löschungsmechanismus ist. Dennoch konnte eine Beteiligung von Wassermolekülen nicht ausgeschlossen werden. Die Beteiligung eines Elektronentransfers von einem Tryptophanrest in der Bindetasche auf das photoangeregte Flavin konnte durch Messungen an Dodecinproteinen mit Tryptophan-Derivaten mit unterschiedlichen Ionisationsenergien bestätigt werden.
Die Spezies, die mit einer Zeitkonstante von etwa 5 ps zerfällt, die ebenfalls zu einer Wiederbesetzung des Ausgangszustands führt, konnte nicht eindeutig identifiziert werden. Die spektrale Signatur des zerfallassoziierten Spektrums könnte neben einer neutralen Tryptophanspezies und einem kationischen Riboflavinradikal auch durch schwingungsangeregte Riboflavinmoleküle verursacht werden.
Eine Beteiligung der Ribitylkette am Mechanismus kann aufgrund der Ergebnisse von HsDod-gebundenem Lumiflavin ausgeschlossen werden. Weiterhin konnte anhand der Ergebnisse für HsDod-gebundenes FAD, das in seiner geschlossenen Konformation gebunden wird, wobei der Adeninrest die zweite Position in der Bindetasche besetzt, eine Beteiligung des zweiten Flavins in der Bindetasche am Löschungsmechanismus sowie ein Beitrag zu den Differenzspektren ausgeschlossen werden. Somit dient die Besetzung einer Bindetasche mit zwei Flavinmolekülen vermutlich lediglich der Maximierung der Flavinbeladung. Nicht eindeutig geklärt werden konnte die Frage, ob es sich um einen sequentiellen oder parallelen Mechanismus handelt.
Neben archaealem wurde auch bakterielles Dodecin mittels transienter UV/vis-Spektroskopie untersucht. Für Dodecin aus Halorhodospira halophila (HhDod) konnte ebenfalls eine sehr schnelle Wiedererlangung des Ausgangszustands nach Photoanregung des gebundenen Riboflavins beobachtet werden. Allerdings spiegeln einige Unterschiede in den transienten Daten die Unterschiede in den Bindetaschen von archaealem und bakteriellem Dodecin wider und geben Hinweise darauf, dass die Funktionen in der Zelle für die Dodecine unterschiedlich sind. Diese Hypothese wird durch verschiedene Cofaktoren, Riboflavin und Lumichrom für HsDod und FMN für HhDod, in vivo unterstützt. Die ermittelten Zeitkonstanten sind für das bakterielle Dodecin etwas länger als für das archaeale und die transienten Daten weisen in den spektralen Signaturen der Differenzsignale sowohl Unterschiede als auch Gemeinsamkeiten auf.
Im zweiten Teil dieser Arbeit wurden erste Schritte der Peptidfaltung mit Hilfe eines wasserlöslichen bizyklischen Modellpeptids, das den Photoschalter 4(4’-Aminomethylphenylazo)benzoesäure (AMPB) enthält, untersucht. Hierfür wurden Kurzzeitspektroskopische Messungen im mittleren infraroten Spektralbereich für den Schaltvorgang von der cis-Form des Azopeptids in die trans-Form durchgeführt. Diese Methode erlaubt es, transiente Konformationsänderungen des Peptidrückgrats zu verfolgen. In der cis-Form kann das Peptid mehrere unterschiedliche Konformationen einnehmen, während der Konformationsraum für die trans-Form deutlich eingeschränkt ist. Nach der Photoanregung im Bereich der n-pi*-Bande der Azobenzoleinheit finden die grundlegenden konformationellen Änderungen innerhalb der ersten 10-20 ps statt. Dies wurde durch polarisationsabhängige Messungen bestätigt.
Auf dieser Zeitskala finden die größten Änderungen in den transienten Differenzspektren statt, die auf Konformationsänderungen sowie Kühlprozesse zurückzuführen sind. Diese Prozesse konnten mit einer Zeitkonstanten von 5 ps zusammengefasst werden. Auf längeren Zeitskalen finden weitere Reorganisationsprozesse statt, die mit einer Zeitkonstante von 300 ps zusammengefasst werden können. Bei maximaler Verzögerungszeit des Experiments (1,8 ns) ist der Gleichgewichtszustand noch nicht erreicht und es finden weitere Prozesse auf längeren Zeitskalen statt. Im Vergleich zu einem ähnlichen bereits untersuchten DMSOlöslichen bizyklischen AMPB-Peptid konnte keine schnellere Dynamik durch den Einsatz von Wasser als Lösemittel festgestellt werden, wie es vorangegangene transiente Experimente im UV/vis-Spektralbereich an wasser- und DMSO-löslichen bizyklischen Azopeptiden angedeutet hatten. Die Ergebnisse der transienten Messungen zeigen gute Übereinstimmungen mit molekulardynamischen Rechnungen. Das so gewonnene Modell von den Prozessen nach der Isomerisierung des Photoschalters erlaubt Einblicke in erste Schritte bei der Faltung von Peptiden in ihrem natürlichen Lösungsmittel Wasser und die Zeitskalen der entsprechenden Prozesse.