Microplastics in freshwater ecosystems : what we know and what we need to know

  • Background: While the use of plastic materials has generated huge societal benefits, the "plastic age" comes with downsides: One issue of emerging concern is the accumulation of plastics in the aquatic environment. Here, so-called microplastics (MP), fragments smaller than 5 mm, are of special concern because they can be ingested throughout the food web more readily than larger particles. Focusing on freshwater MP, we briefly review the state of the science to identify gaps of knowledge and deduce research needs. State of the science: Environmental scientists started investigating marine (micro)plastics in the early 2000s. Today, a wealth of studies demonstrates that MP have ubiquitously permeated the marine ecosystem, including the polar regions and the deep sea. MP ingestion has been documented for an increasing number of marine species. However, to date, only few studies investigate their biological effects. The majority of marine plastics are considered to originate from land-based sources, including surface waters. Although they may be important transport pathways of MP, data from freshwater ecosystems is scarce. So far, only few studies provide evidence for the presence of MP in rivers and lakes. Data on MP uptake by freshwater invertebrates and fish is very limited. Knowledge gaps: While the research on marine MP is more advanced, there are immense gaps of knowledge regarding freshwater MP. Data on their abundance is fragmentary for large and absent for small surface waters. Likewise, relevant sources and the environmental fate remain to be investigated. Data on the biological effects of MP in freshwater species is completely lacking. The accumulation of other freshwater contaminants on MP is of special interest because ingestion might increase the chemical exposure. Again, data is unavailable on this important issue. Conclusions: MP represent freshwater contaminants of emerging concern. However, to assess the environmental risk associated with MP, comprehensive data on their abundance, fate, sources, and biological effects in freshwater ecosystems are needed. Establishing such data critically depends on a collaborative effort by environmental scientists from diverse disciplines (chemistry, hydrology, ecotoxicology, etc.) and, unsurprisingly, on the allocation of sufficient public funding.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin Wagner, Christian Scherer, Diana Alvarez-Muñoz, Nicole Brennholt, Xavier Bourrain, Sebastian Buchinger, Elke Fries, Cécile Grosbois, Jörg Klasmeier, Teresa Marti, Sara Rodriguez-Mozaz, Ralph Urbatzka, A. Dick Vethaak, Margrethe Winther-Nielsen, Georg Reifferscheid
URN:urn:nbn:de:hebis:30:3-347144
DOI:https://doi.org/10.1186/s12302-014-0012-7
ISSN:2190-4715
ISSN:2190-4707
Parent Title (English):Environmental sciences Europe
Publisher:Springer
Place of publication:Berlin ; Heidelberg
Document Type:Article
Language:English
Date of Publication (online):2014/07/09
Date of first Publication:2014/07/09
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2014/09/19
Tag:Chemistry; Ecotoxicology; Environmental quality; Litter; Microplastics; Monitoring; Plastics; Polymers; Review; Water framework directive
Volume:26
Issue:12
Page Number:9
Note:
© 2014 Wagner et al.; licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
HeBIS-PPN:366218298
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 4.0