Population structure and distribution patterns of the sibling mosquito apecies Culex pipiens and Culex torrentium (Diptera: Culicidae) reveal different evolutionary paths

  • Nowadays a number of endemic mosquito species are known to possess vector abilities for various diseases, as e.g. the sibling species Culex pipiens and Culex torrentium. Due to their morphological similarity, ecology, distribution and vector abilities, knowledge about these species' population structure is essential. Culicidae from 25 different sampling sites were collected from March till October 2012. All analyses were performed with aligned cox1 sequences with a total length of 658 bp. Population structure as well as distribution patterns of both species were analysed using molecular methods and different statistical tests like distance based redundancy analysis (dbDRA), analysis of molecular variances (AMOVA) or McDonald & Kreitman test and Tajima's D. Within both species, we could show a genetic variability among the cox1 fragment. The construction of haplotype networks revealed one dominating haplotype for Cx. pipiens, widely distributed within Germany and a more homogeneous pattern for Cx. torrentium. The low genetic differences within Cx. pipiens could be a result of an infection with Wolbachia which can induce a sweep through populations by passively taking the also maternally inherited mtDNA through the population, thereby reducing the mitochondrial diversity as an outcome of reproductive incompatibility. Pairwise population genetic differentiation (FST) ranged significantly from moderate to very great between populations of Cx. pipiens and Cx. torrentium. Analyses of molecular variances revealed for both species that the main genetic variability exists within the populations (Cx. pipiens [88.38%]; Cx. torrentium [66.54%]). Based on a distance based redundancy analysis geographical origin explained a small but significant part of the species' genetic variation. Overall, the results confirm that Cx. pipiens and Cx. torrentium underlie different factors regarding their mitochondrial differentiation, which could be a result of endosymbiosis, dispersal between nearly located populations or human introduction.

Download full text files

Export metadata

Metadaten
Author:Antje Werblow, Sven KlimpelORCiDGND, Sarah Bolius, Adriaan W. C. Dorresteijn, Jan Sauer, Christian Melaun
URN:urn:nbn:de:hebis:30:3-347320
DOI:https://doi.org/10.1371/journal.pone.0102158
ISSN:1932-6203
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/25048456
Parent Title (English):PLoS One
Publisher:PLoS
Place of publication:Lawrence, Kan.
Document Type:Article
Language:English
Date of Publication (online):2014/07/21
Date of first Publication:2014/07/21
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2014/08/05
Volume:9
Issue:(7):e102158
Page Number:14
Note:
Copyright: © 2014 Werblow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
HeBIS-PPN:366015850
Institutes:Biowissenschaften / Biowissenschaften
Angeschlossene und kooperierende Institutionen / Senckenbergische Naturforschende Gesellschaft
Biowissenschaften / Institut für Ökologie, Evolution und Diversität
Fachübergreifende Einrichtungen / Biodiversität und Klima Forschungszentrum (BiK-F)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlungen:Universitätspublikationen
Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 4.0