The contribution of proteins associated with cell adhesion and survival to tissue integrity in the mammary gland

  • Tissue integrity is defined by the composition and connection of cells as a structural and functional unit. It is modulated by a magnitude of processes including differentiation, survival, controlled death and adhesion of cells. Besides, external factors such as physical forces are also involved. A suitable model system to study all modalities of tissue integrity is the mammary gland. Postnatally and within the reproductive phase, the mammary gland undergoes morphological and functional modifications that periodically loosen or strengthen tissue integrity. An important point in the development of the mammary gland is the regression during weaning, also termed involution. The transition from lactation to involution is important for a controlled loss of tissue integrity. In this transition, collective cell death is initiated but not yet prominent enabling the mammary gland to fully recover lactation. In this thesis, modalities of tissue integrity were investigated using three-dimensional cell cultures (i.e. spheroids) and the mammary gland as model systems. In the context of this thesis, I established (1) an immunofluorescence staining protocol and its detailed evaluation. Furthermore, I studied (2) the role of cell survival during mammary gland development, (3) the effect of physical forces that modulate tissue integrity and (4) the contribution of proteins to cell adhesion and growth. Since a homogeneous fluorescence stain of the specimen is necessary for quantitative analysis, an immunofluorescence staining protocol was established to stain large spheroids in toto. The evaluation contributes qualitative and quantitative criteria that judge the specificity, intensity and homogeneity of the stain. Based on this approach, it was possible to demonstrate the morphological and functional characteristics that spheroids share with the mammary gland in vivo. These characteristics included the synthesis of extracellular matrix, the development of polarized acinar structures and lactogenic differentiation. The role of cell survival during mammary gland development was analyzed by means of the expression profile of the pro-survival protein BAG3. The expression of BAG3 differed in the progress of mammary gland development. While the expression was low during pregnancy, it rose in the lactation phase and peaked within the first days of involution, indicating that BAG3 is associated with early involution in the mammary gland. In vitro experiments related the expression of BAG3 to cell survival in mammary epithelial cells. Physical forces naturally occur during developmental processes influence tissue integrity during the initiation of mammary gland involution. The influence of physical force applied as compression on mammary epithelial spheroids was investigated. A morphological analysis showed that following a lag, the cell nuclei volume changed upon compression. A short-term compression induced the activation of caspases. A prolonged compression reduced the activity of caspases. This suggests the induction of a process that allows cells the adaption to changing environmental conditions. BAG3 is known to be involved in mechanical stress-induced autophagy, also known as chaperone assisted selective autophagy (CASA). Compression of spheroids did not induce CASA. The experimentally applied strain was not comparable to the strain found in the alveolar cells during involution in vivo. Thus, whether or not CASA is activated during mammary gland involution remains elusive. Nevertheless, the methodical approach to apply compression on spheroids in vitro is a model to study the influence of physical forces on cell aggregates. Apart from cell survival and physical forces, growth and adhesion of cells affect tissue integrity. A spheroid formation assay and subsequent data analysis and computational modeling enabled the investigation of these processes in a non-adhesive environment. The analysis suggested that spheroid formation follows a reaction-controlled process, in which cells do not necessarily form a connection when they collide. The loss of function of either E-cadherin or actin strongly inhibited the formation of a spheroid. The analysis further revealed that neither E-cadherin nor actin influence the chance of the cells to form a connection when they collide. Both molecules are more important in stabilizing established connections. Depolymerization of microtubules still allowed spheroids to form, but the formation was decelerated and growth of the final spheroids was inhibited. The results from computational modeling suggested that microtubules act on cell adhesion through different mechanisms, which also vary among different cell types. The inhibition of FAK phosphorylation at Y397, a downstream target of integrin signaling, and the analysis of FAK protein levels in spheroids showed that integrin-mediated signaling is not prominent in three-dimensional spheroids formed from non-invasive cells. A deletion of BAG3 gene expression increased the number of dead cells in forming spheroids suggesting that BAG3 predominantly affects cell survival. The results of this thesis identified and characterized adhesion- and survival-associated proteins that are important for tissue integrity. This thesis suggests that a BAG3-dependent cell survival mechanism is prominent at the beginning of mammary gland involution. Future studies will have to identify the related factors and inducers of tissue integrity loss in the mammary gland. This will shed light on the physiology of the organ and could explain the disorders that destroy its integrity. In addition, this thesis contributes to a better understanding of spontaneous cell aggregation, the aggregate organization and implies a role of cell migration in these processes. Future studies that focus on three-dimensional cell migration could explain, how cell migration is promoted and to which extent it supports tissue integrity.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Isabell Smyrek
Place of publication:Frankfurt am Main
Referee:Ernst H. K. StelzerORCiDGND, Anna Starzinski-Powitz
Document Type:Doctoral Thesis
Date of Publication (online):2018/01/17
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/01/17
Release Date:2018/01/18
Page Number:xviii, 162
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht