Three-dimensional cellular aggregates : computational analysis and biological significance in tissue integrity and early embryonic development

  • Cells within a tissue form highly complex, cellular interactions. This architecture is lost in two-dimensional (2D) cell cultures. To close the gap between 2D cell cultures and in vivo tissues, three-dimensional (3D) cell cultures such as spheroids or embryoid bodies were developed. To fully take advantage of the third dimension, imaging techniques are essential. The emerging field of "image-based systems biology" exploits the information in images and builds a connection between experimental and theoretical investigation of biological processes. Such interdisciplinary approaches strongly depend on the development of protocols to establish 3D cell cultures, innovations in sample preparation, well-suited imaging techniques and quantitative segmentation methods. Although 3D cell cultures and image-based systems biology provide a great potential, 2D methods are still not completely replaced by 3D methods. This is mainly due to methodical and technical hurdles. Therefore, this thesis provides a significant contribution to overcome these hurdles and to further develop 3D cell cultures. I established computational and experimental methods related to 3D aggregates and investigated fundamental, cellular processes such as adhesion, growth and differentiation. The automatic segmentation method "PAS" and "LoS" were developed in the context of this thesis. They extract essential biological properties such as the projected area or features of cell nuclei from 2D or 3D images of 3D aggregates. Both algorithms show their accuracy robustly over image data from different samples and different microscopes. In addition, the superior performance of PAS and LoS was proven in a comparison with state-of-the-art methods. The PAS approach served as an essential basis for investigating cellular processes such as adhesion and growth which are tightly regulated to contribute to tissue integrity. These processes are involved in the formation of spheroids. The temporally resolved data of spheroid formation of three mammary epithelial cell lines revealed differences in their formation dynamics as well as in the onset of spheroid formation phases (aggregation, compaction and growth). Despite these differences, adhesion- and growth-associated proteins such as E-cadherin, actin, microtubules, and the focal adhesion kinase show similar importance in a particular phase. Notably, certain proteins (e.g. E-Cadherin) contribute differently to spheroid formation of cells from different cell types in terms of cell adhesion and growth. Overall, analyses of the individual phases of spheroid formation revealed the temporal coordination of fundamental tissue-specific processes. The results contribute to a better understanding of the maintenance and disruption of tissue integrity. An important but yet unknown process is how cells accomplish to arrange themselves against the gravitational force to form a spheroid. Live imaging with light sheet-based microscopy provides the best solution for a temporally and in particular spatially resolved investigation of spheroid formation. Although the imaging possibilities increase with this particular microscopy technique, available sample preparation methods are rare. Therefore, I have significantly optimized "agarose beaker" as preparation method for 3D long-term imaging of spheroid formation. The data show that upward movement of the cells takes place early. This movement is initiated in the centre of the initially flat cell layer. Subsequently, the cells move from the periphery of the cell layer toward the centre. Cells rearrange within the spheroid which is followed by growth. It is very likely that 3D aggregates form by adopting an energetically favoured, spherical shape by increasing cell-cell or cell-matrix contacts. Besides the knowledge gained from the examination of the self-assembly process in different contexts, fully formed cellular aggregates can serve as basis to investigate differentiation processes. Differentiation guide cell fate specification during early embryonic development (i.e. preimplantation) and is not fully understood yet. Due to the lack of an in vitro system for preimplantation, I have developed "blastoids". These are 3D multicellular aggregates of mouse embryonic stem cells which represent important phases of preimplantation and beyond. In qualitative and quantitative analyses, a strong similarity was proven between blastoids and the inner cell mass of in vivo mouse embryos. Further results strongly suggest that both, the cell number and the trophectoderm play a subordinate role for cell fate decision during preimplantation. Furthermore, 3D neighbourhood analyses have shown that both, blastoids and mouse embryos, do not show a random "salt-and-pepper" pattern during differentiation. Instead, they show a yet unknown local clustering of cells with identical fates, suggesting local cell interactions that influence cell fate decision. Furthermore, the data indicate that the maturation of the epiblast in the later stages of preimplantation is initiated by an interaction between cells of the epiblast and the primitive endoderm. Using image-based systems biology, I have investigated fundamental cellular processes such as adhesion, growth and differentiation in the context of tissue integrity and early embryonic development using 3D cellular aggregates. This highly interdisciplinary work is a major contribution to 3D cell biology and demonstrates how cells bind and interact within a complex system. The main methods developed in this thesis as well as the biological findings can be used not only in further biological but also in medical and pharmacological studies. They have the potential to advance our understanding of complex biological systems and to provide new opportunities for practical applications.

Download full text files

  • AbstractMathew.txt
  • PhDThesisMathew.pdf

    without CV

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Biena Mathew Elavunkal
Referee:Ernst H. K. StelzerORCiDGND, Matthias KaschubeORCiDGND
Advisor:Ernst H. K. Stelzer
Document Type:Doctoral Thesis
Year of Completion:2018
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/02/23
Release Date:2018/04/06
Page Number:201
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG