Structural characterization of membrane protein complexes by single-particle cryo-EM

  • Electron microscopy (EM) demarcates itself from other structural biology techniques by its applicability to a large range of biological objects that spans from whole cells to individual macromolecules. In single-particle cryo-EM, frozen-hydrated samples, prepared by vitrification with liquid ethane, retain macromolecules in a medium that approximates their natural aqueous environment and that, in this way, preserves high-resolution structural information. Nonetheless, the sensitivity of biological specimens to the high-energy electron beam introduces restrictions on the total dose that can be used during imaging while avoiding significant radiation damage. Consequently, the signal-to-noise ratio attained in each individual image is very low, and structures with high-resolution detail must be recovered by averaging thousands of projections in random orientations. This is achieved through the use of image processing algorithms capable of aligning and classifying particle images through the evaluation of cross-correlation functions between each particle and a reference. In recent years, several innovations took place in the field of single-particle cryo-EM, among which the development of direct electron detectors must be highlighted. Direct electron detectors have a better detective quantum efficiency (DQE) than both photographic film and CCD cameras, and offer a fast readout, compatible with the acquisition of movie stacks. Additionally, new image processing software has become available, with more sophisticated algorithms and designed to take advantage of the specific characteristics of the movies produced with direct electron detectors. These technological advances in both hardware and software catalyzed a revolution in single-particle cryo-EM, which is now routinely used for the determination of near-atomic structures. As a result, the range of macromolecules accessible to cryo-EM has increased drastically, as targets that were unsuitable before for imaging due to their small dimensions can now be adequately visualized and refined to high-resolution. During my doctoral work, I have used single-particle cryo-EM to structurally characterize challenging membrane proteins, with a strong emphasis on protein complexes from aerobic respiratory chains. In chapter I of this thesis, I present my results on the bovine respirasome, a mitochondrial supercomplex composed of complexes I, III and IV. Chapter II is dedicated to the analysis of the structure of alternative complex III (ACIII) from Rhodothermus marinus, a bacterial quinol:cytochrome c/HiPIP oxidoreductase unrelated to the canonical cytochrome bc1 complex (complex III). In addition, in chapter III I describe the structure of KimA, a high-affinity potassium transporter that drives the transport of its substrate by using the energy stored in the form of a proton gradient. These three membrane proteins, with molecular weights ranging from 140 kDa to 1.7 MDa, illustrate the possibilities and limitations faced in single-particle cryo-EM. The aerobic respiratory chain is responsible for the generation of a transmembrane difference of electrochemical potential that is then used by ATP synthase for the production of ATP or for driving solute transport over the membrane. They catalyze the transfer of electrons from a substrate, such as NADH or succinate, to molecular oxygen and use the chemical energy released in these redox reactions to drive the translocation of protons, or in some cases sodium ions, to the intermembrane space in mitochondria or the periplasm in bacteria. In mitochondria, the respiratory chain is composed of four complexes: complex I (NADH:ubiquinone oxidoreductase), complex II (succinate dehydrogenase), complex III (cytochrome bc1 complex) and complex IV (cytochrome c oxidase). While it was for a long time believed that these complexes existed as single entities in the membrane, the use of milder procedures for protein purification and analysis revealed that respiratory complexes associate into well-ordered structures, known as supercomplexes. These have been proposed to offer different structural and functional advantages that are still controversial, including substrate channeling, stabilization of individual complexes and reduction of reactive oxygen species (ROS) production. The most thoroughly studied respiratory supercomplex has been the respirasome, conserved in higher eukaryotes and composed of one copy of complex I, a complex III dimer and one complex IV. By single-particle cryo-EM analysis, I retrieved a 9 Å map of the respirasome from Bos taurus, which allowed the accurate docking of atomic models of the three component complexes. The structure shows that complex III associates to the concave side of the membrane arm of complex I, while complex IV is located between the end of the complex I hydrophobic arm and complex III. Several defined protein-protein contacts are observed between the component complexes, which are mediated predominantly by supernumerary subunits and close to the membrane surfaces. The interactions established between complex I and complex III are extensive and may support the argument that the association of complex I into supercomplexes is required for the stabilization or even the biogenesis of this complex. ...

Download full text files

Export metadata

Metadaten
Author:Joana Sofia de SousaORCiDGND
URN:urn:nbn:de:hebis:30:3-517782
Place of publication:Frankfurt am Main
Referee:Volker DötschORCiDGND, Werner KühlbrandtORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/11/22
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/11/18
Release Date:2019/11/29
Tag:membrane protein complexes; potassium transporter; respiratory chain; single particle cryo-EM; supercomplex
Page Number:191
HeBIS-PPN:456251391
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht