Multi view registration of C.elegans embryo

  • Multi-view microscopy techniques are used to increase the resolution along the optical axis for 3D imaging. Without this, the resolution is insufficient to resolve subcellular events. In addition, parts of the images of opaque specimens are often highly degraded or masked. Both problems motivate scientists to record the same specimen from multiple directions. The images, then have to be digitally fused into a single high-quality image. Selective-plane illumination microscopy has proven to be a powerful imaging technique due to its unsurpassed acquisition speed and gentle optical sectioning. However, even in the case of multi view imaging techniques that illuminate and image the sample from multiple directions, light scattering inside tissues often severely impairs image contrast. Here we show that for c-elegans embryos multi view registration can be achieved based on segmented nuclei. However, segmentation of nuclei in high density distribution like c-elegans embryo is challenging. We propose a method which uses 3D Mexican hat filter for preprocessing and 3D Gaussian curvature for the post-processing step to separate nuclei. We used this method successfully on 3 data sets of c-elegans embryos in 3 different views. The result of segmentation outperforms previous methods. Moreover, we provide a simple GUI for manual correction and adjusting the parameters for different data. We then proposed a method that combines point and voxel registration for an accurate multi view reg- istration of c-elegans embryo, which does not need any special experimental preparation. We demonstrate the performance of our approach on data acquired from fixed embryos of c-elegans worms. This multi step approach is successfully evaluated by comparison to different methods and also by using synthetic data. The proposed method could overcome the typically low resolution along the optical axis and enable stitching to- gether the different parts of the embryo available through the different views. A tool for running the code and analyzing the results is developed.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Fatemeh Bagheri
Place of publication:Frankfurt am Main
Referee:Matthias KaschubeORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2021/07/01
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/02/24
Release Date:2021/12/08
Page Number:101
Institutes:Informatik und Mathematik / Informatik
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoDeutsches Urheberrecht