Ingestion and toxicity of polystyrene microplastics in freshwater bivalves

  • he ubiquity of microplastics in aquatic ecosystems has raised concerns over their interaction with biota. However,microplastics research on freshwater species, especially mollusks, is still scarce. We, therefore, investigated the factorsaffecting microplastics ingestion in the freshwater musselDreissena polymorpha. Using polystyrene spheres (5, 10, 45,90μm), we determined the body burden of microplastics in the mussels in relation to 1) exposure and depuration time, 2)body size, 3) food abundance, and 4) microplastic concentrations.D. polymorpharapidly ingested microplastics and ex-creted most particles within 12 h. A few microplastics were retained for up to 1 wk. Smaller individuals had a higher relativebody burden of microplastics than larger individuals. The uptake of microplastics was concentration‐dependent, whereas anadditional food supply (algae) reduced it. We also compared the ingestion of microplastics byD. polymorphawith 2 otherfreshwater species (Anodonta anatina,Sinanodonta woodiana), highlighting that absolute and relative uptake depends onthe species and the size of the mussels. In addition, we determined toxicity of polystyrene fragments (≤63μm,6.4–100 000 p mL–1) and diatomite (natural particle, 100 000 p mL–1)inD. polymorphaafter 1, 3, 7, and 42 d of exposure,investigating clearance rate, energy reserves, and oxidative stress. Despite ingesting large quantities, exposure to poly-styrene fragments only affected the clearance rate ofD. polymorpha. Further, results of the microplastic and diatomiteexposure did not differ significantly. Therefore,D. polymorphais unaffected by or can compensate for polystyrene fragmenttoxicity even at concentrations above current environmental levels.Environ Toxicol Chem2021;40:2247–2260. © 2021 TheAuthors.Environmental Toxicology and Chemistrypublished by Wiley Periodicals LLC on behalf of SETAC.Keywords:Microplastics; Toxic effects; Mollusk toxicity

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Annkatrin Weber, Nina Jeckel, Carolin Weil, Simon Umbach, Nicole Brennholt, Georg Reifferscheid, Martin Wagner
Parent Title (German):Environmental toxicology and chemistry
Document Type:Article
Date of Publication (online):2021/04/30
Date of first Publication:2021/04/30
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2022/01/17
Page Number:14
First Page:2247
Last Page:2260
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
3 Sozialwissenschaften / 33 Wirtschaft / 333 Boden- und Energiewirtschaft / 333.7 Natürliche Ressourcen, Energie und Umwelt
Licence (German):License LogoDeutsches Urheberrecht