Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 10 von 22
Zurück zur Trefferliste

Effects of self-organization on variability in neural circuits

  • The brain is a highly dynamic and variable system: when the same stimulus is presented to the same animal on the same day multiple times, the neural responses show high trial-to-trial variability. In addition, even in the absence of sensory stimulation neural recordings spontaneously show seemingly random activity patterns. Evoked and spontaneous neural variability is not restricted to activity but is also found in structure: most synapses do not survive for longer than two weeks and even those that do show high fluctuations in their efficacy. Both forms of variability are further affected by stochastic components of neural processing such as frequent transmission failure. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here, we will investigate how the self-organizational processes of neural circuits affect the high variability in two different directions: First, we will show that recurrent dynamics of self-organizing neural networks can account for key features of neural variability. This is achieved in the absence of any intrinsic noise sources by the neural network models learning a predictive model of their environment with sampling-like dynamics. Second, we will show that the same self-organizational processes can compensate for intrinsic noise sources. For this, an analytical model and more biologically plausible models are established to explain the alignment of parallel synapses in the presence of synaptic failure. Both modeling studies predict properties of neural variability, of which two are subsequently tested on a synapse database from a dense electron microscopy reconstruction from mouse somatosensory cortex and on multi-unit recordings from the visual cortex of macaque monkeys during a passive viewing task. While both analyses yield interesting results, the predicted properties were not confirmed, guiding the next iteration of experiments and modeling studies.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Christoph HartmannGND
URN:urn:nbn:de:hebis:30:3-423872
Verlagsort:Frankfurt am Main
Gutachter*in:Jochen TrieschORCiD, Matthias KaschubeORCiDGND
Betreuer:Jochen Triesch
Dokumentart:Dissertation
Sprache:Englisch
Datum der Veröffentlichung (online):09.12.2016
Jahr der Erstveröffentlichung:2016
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:25.11.2016
Datum der Freischaltung:09.12.2016
Freies Schlagwort / Tag:SORN; STDP; neural networks; plasticity; synaptic normalization; variability
Seitenzahl:172
HeBIS-PPN:39649062X
Institute:Informatik und Mathematik / Informatik
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoDeutsches Urheberrecht