Refine
Year of publication
Document Type
- Doctoral Thesis (38)
Has Fulltext
- yes (38)
Is part of the Bibliography
- no (38)
Keywords
- AMPK, nuclear receptors, PPAR, LXR, fatty acid oxidation, ABCA1, human macrophages (1)
- BAM complex (1)
- Cell-free protein synthesis (1)
- Cytochrome bc1 complex (1)
- ERQC (1)
- Electron paramagnetic resonance (1)
- MHC I (1)
- Pulsed electron-electron double resonance spectroscopy (1)
- Ubihydrochinon-Cytochrom-c-Reductase (1)
- dynamics (1)
Institute
- Biochemie, Chemie und Pharmazie (17)
- Biochemie und Chemie (16)
- Biowissenschaften (3)
- MPI für Biophysik (1)
- Pharmazie (1)
- Physik (1)
Die NADPH-Oxidasen stellen eine wichtige Quelle für reaktive Sauerstoffspezies (Reactive oxygen species; ROS) im Organismus dar. Hierbei dienen die NADPH-Oxidasen nicht nur der Pathogenabwehr, sondern haben einen Einfluss auf eine Vielzahl an oxidativen, physiologischen Prozessen. Unter den NADPH-Oxidasen ist NOX4 einzigartig, da es hauptsächlich im endoplasmatischen Retikulum (ER) lokalisiert ist, konstitutiv aktiv ist und Wasserstoffperoxid (H2O2) produziert. Wir vermuten, dass diese besonderen Eigenschaften eine Konsequenz aus der Interaktion mit bislang unentdeckten NOX4-interagiereden Proteinen ist.
Zweidimensionale blau-native Polyacrylamid-Gelelektrophorese (BN-PAGE) kombiniert mit SDS-PAGE zeigte NOX4 in makromolekularen Komplexen. Interagierende Proteine wurden durch eine quantitative SILAC (stable isotope labeling of amino acids in cell culture)-Co-immunopräzipitation (Co-IP) in NOX4-überexprimierenden HEK293-Zellen gescreent. Hierdurch konnten verschiedene interagierende Proteine identifiziert werden, wobei Calnexin die robusteste Interaktion aufwies. Calnexin konnte zudem in NOX4-haltigen Komplexen durch Complexome Profiling der BN-PAGE oder gleichzeitiger Antikörperfärbung nachgewiesen werden. Die Calnexin-NOX4-Interaktion konnte mittels reverser Co-IP und Proximity ligation assay bestätigt werden, während NOX1, NOX2 und NOX5 nicht mit Calnexin interagierten. Calnexin-Defizienz, untersucht in embryonalen Mausfibroblasten oder durch shRNA gegen Calnexin, reduzierte die NOX4-Proteinexpression und ROS-Bildung, wobei die mRNA-Expression unverändert blieb. Des Weiteren wurde untersucht, ob der bekannte Interaktionspartner von NADPH-Oxidasen, p22phox, wirklich essentiell für die Expression oder Aktivität von NOX4 ist, da es nur in manchen der NOX4-Co-IPs nachgewiesen wurde. Um den Einfluss von p22phox für NOX4 aufzuklären wurde ein CRISPR/Cas9 Knockdown in NOX4-überexprimierenden HEK293 Zellen etabliert. p22phox zeigte keinen Einfluss auf die NOX4-Expression, jedoch war die NOX4-abhängige ROS-Produktion in p22phox-Knockout Zellen verschwunden.
Unsere Ergebnisse deuten darauf hin, dass endogenes NOX4 makromolekulare Komplexe mit Calnexin ausbildet, welches für die korrekte Reifung, Prozessierung und Funktion von NOX4 im ER nötig ist. Darüber hinaus ist p22phox nicht für die Reifung von NOX4, aber für dessen Aktivität nötig. Diese Ergebnisse zeigen eine vielfältige Regulation von NOX4 auf Proteinebene.
Cell-free-synthesized voltage-gated proton channels: Approaches to the study of protein dynamics
(2018)
We often only realize how important health is when diseases manifest themselves through their symptoms and, ultimately, in a diagnosis. Over time, we suffer from many diseases starting with the first childhood disease to colds to gastrointestinal infections. Most diseases pass harmlessly and symptoms fade away. However, not all diseases are so harmless. Alzheimer’s disease, breast cancer, Parkinson’s disease, and colorectal cancer usually cause severe illness with high mortality rates. In pharmaceutical research, efforts are therefore being made to determine the molecular basis of them in order to provide patients with potential relief and, at best, healing. A special group of regulators, involved in the previously mentioned diseases, are voltage-gated proton channels. Thus, the understanding of their structure, function, and potential drug interaction is of great importance for humanity.
Voltage-gated proton channels are localized in the cell membrane. As their name indicates, they are controlled by voltage changes. Depolarization of the cell membrane induces conformational changes that open these channels allowing protons to pass through. Here, the transfer is based on a passive process driven by a concentration gradient between two individual compartments separated by the cell membrane. Voltage-gated proton channels are highly selective for protons and show a temperature- and pH-dependent gating behavior. However, little is known about their channeling mechanism. Previous experimental results are insufficient for understanding the key features of proton channeling.
In this thesis, for the first time, the cell-free production of voltage-sensing domains (VSD) of human voltage-gated proton channels (hHV1) and zebrafish voltage-sensing phosphatases (DrVSP) is described. Utilizing the cell free approach, parameters concerning protein stability, folding and labeling can be easily addressed. Furthermore, the provision of a membrane mimetic in form of detergent micelles, nanodiscs, or liposomes for co-translational incorporations of these membrane proteins is simple and efficient. Both VSDs were successfully produced up to 3 mg/ml. Furthermore, the cell-free synthesis enabled for the first time studies of lipid-dependent co-translational VSD insertions into nanodiscs and liposomes. Cell-free produced VSDs were shown to be active, and to exist mainly as dimers. In addition, also their activation was stated to be lipid-dependent, which has not been described so far. Solution-state NMR experiments were performed with fully and selectively labeled cell-free produced VSDs. With respect to the development of potential drug candidates, I could demonstrate the inhibition of the VSDs by 2-guanidinobenzimidazole (2GBI). Determined KD values were comparable to literature data for the human construct. For the first time, a low affinity for 2GBI of the zebrafish VSD could be described.
In future, the combination of a fast, easy and cheap cell-free production of fully or selectively labeled VSDs and their analysis by solution state NMR will enable structure determinations as well as inhibitor binding studies and protein dynamic investigations of those proteins. The results of these investigations will serve as a basis for example for the development of new drugs. In addition, a detailed description of the lipid-dependent activity might be helpful in controlling the function of voltage-gated proton channels in cancer cells and thereby reducing their growth or disturbing their cell homeostasis in general.
Disturbances in lipid metabolism are responsible for many chronic disorders, such as type 2 diabetes and atherosclerosis. Regulation of lipid metabolism occurs by activated transcription factors peroxisome proliferator-activated receptor δ (PPARδ) and liver X receptor α (LXRα) mediating transcription of different target genes involved in regulation of fatty acid uptake and oxidation or cellular cholesterol homeostasis. This is especially relevant for the macrophages, since pathways regulated by PPARδ and LXRα affect foam cell formation, a process driving the progression of atherosclerotic lesion. AMP-activated protein kinase (AMPK) plays a central role in energy homeostasis in every type of eukaryotic cell, but its role in human macrophages, particularly with regard to lipid metabolism, is not precisely defined yet. Thus, I investigated the impact of AMPK activity on PPARδ and LXRα and the expression of their target genes involved in fatty acid oxidation (FAO) and cholesterol metabolism.
As PPARδ has been described as a potential target for prevention and treatment of several disorders and AMPK as interesting drug target for diabetes and metabolic syndrome, the aim of the first part of my studies was to investigate their interaction in primary human macrophages. Completing the first challenge successfully, I was able to establish a lentiviral transduction system for constitutively active AMPK (consisting of a truncated catalytic AMPKα1 subunit bearing an activating T198D mutation) in primary human macrophages.
Using genome-wide microarray analysis of gene expression, I demonstrate FAO as the strongest affected pathway during combined AMPKα1 overexpression and PPARδ activation.
The most influenced genes were validated by quantitative PCR as well as by Western analysis. I found that AMPK increases the expression of FAO-associated genes targeted by PPARδ. Corroborating the results obtained using AMPKα1 overexpression, PPARδ target gene expression was increased not only by PPARδ agonist GW501516, but also by pharmacological allosteric AMPK activator A-769662. Additional enhancement of target gene mRNA expression was achieved upon co-activation of PPARδ and AMPK. Silencing PPARδ expression increased basal expression of target genes, confirming the repressive nature of ligand-free PPARδ, abolishing the increased target gene expression upon AMPK or PPARδ activation. Measurements of triglyceride contents of human macrophages incubated with VLDL following PPARδ activation demonstrated a reduction of intracellular triglyceride accumulation in cells, which may reflect the enhancement of fat catabolism.
In the second part of my studies, I concentrated on the regulation of cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) expression by AMPK. ABCA1 facilitates
cholesterol efflux from macrophages thus, preventing atherosclerosis progression. For the first time, AMPK implication in the regulation of the ABCA1 pathway could be presented. Both AMPK overexpression and activation lead to significantly increased ABCA1 expression, whereas AMPKα1 knock-down strongly reduced this effect. Besides, I was able to prove an enhanced activity of ABCA1 during AMPK activation in human THP-1 macrophages by measuring cholesterol efflux into apolipoprotein AI-containing medium.
Previous findings showed regulation of ABCA1 by LXRα. I confirmed these results by silencing experiments indicating an essential role of LXRα in ABCA1 regulation pathway.
Here, ABCA1 mRNA as well as protein expression were positively mediated by LXRα. LXRα activation elevated ABCA1 levels, whereas its silencing down-regulated this effect.
Interestingly, ABCA1 was found to be regulated only by LXRα and not through LXRα. At the same time, knock-down of PPARδ, -γ or -δ, which may be also involved in the regulation of LXR/ABCA1 axis, did not influence the activation of ABCA1 expression by an AMPK activator. To confirm that LXRE on Abca1 promoter is essential for ABCA1 regulation, I performed luciferase reporter assay using constructs based on Abca1 promoter with or without LXRE mutation. Mutation of LXRE abolished reporter activity, whereas AMPK activation increased luciferase activity of wild-type LXRE construct. Furthermore, I demonstrate AMPK-dependent LXRα binding to the LXRE site of Abca1 promoter using the method of chromatin immunoprecipitation. AMPK activation significantly increased, whereas silencing of AMPK significantly attenuated LXRα binding, indicating AMPK as one of the most important regulators of ABCA1 expression.
In summary, I provided an evidence for AMPK involvement into lipid and cholesterol metabolism in human macrophages showing the regulation of PPARδ and LXRα target genes. The understanding of AMPK and PPARδ interaction allows the development of new approaches for treatment of metabolic syndrome and related diseases. Increased FAO during the activation of both proteins may exhibit better therapeutic benefit. On the other hand, I have shown the impact of AMPK activation on ABCA1 via LXRα up-regulation leading to increased cholesterol efflux in human macrophages for the first time. These findings thus may impact future improving of anti-atherosclerosis therapies.
In mitochondria, biogenesis of oxidase is a crucial process involving the participation of an array of assembly factors. Studying the process of biogenesis in eukaryotes is highly complicated due to the presence and partaking of two genetic systems. Employing a bacterial model such as Paracoccus denitrificans that utilizes only one genetic system enables easy studying of the assembly process. The aa3 cytochrome c oxidase of P. denitrificans shows high structural and functional homology to its mitochondrial counterpart despite its simple subunit composition. The assembly of the core subunits I and II that house the active redox centers (heme a, and heme a3.CuB centre in subunit I; and the binuclear CuA centre in subunit II) along with the chaperons responsibly for their incorporation form the crux of this work. This work concentrates particularly on CtaG, a chaperone previously speculated to be involved in the delivery of copper to the CuB center in subunit I. As the full length structure of CtaG or its structural homologues have not been solved, attempts were made to obtain high-diffracting crystals of CtaG by heterologously expressing it in E. coli. Growth media, expression strains and induction parameters were some of the conditions screened in order to obtain optimal yield. Additives, pH and detergent were screened to yield a homogeneous preparation of CtaG. Crystallization trials were conducted by employing the sitting drop, vapour diffusion, method and later the bicelles were employed. Preliminary crystals obtained were further optimized employing seeding, detergent and additives, to improve diffraction. The diffraction improved from 30 Å to 15 Å. BN PAGE (Blue Native Polyacrylamide Gel Electrophoresis) analysis and cross-linking studies were undertaken to decipher the oligomeric condition of CtaG. Both the methods indicate that the protein is a dimer under native conditions. To study the importance of CtaG in the process of oxidase assembly, two deletion mutants were obtained from the lab; one with only ctaG deleted and the other with ctaG and most of the upstream ORF. The effect of the deletion was assayed on the assembly and activity of oxidase. The deletion mutants showed residual activity of approx. 20 %, while displaying a very low heme signal (both in membranes and in purified COX). In order to exclude polar effects arising due to gene manipulation, complementation strains were prepared, reintroducing ctaG alone into both the deletion strains. Complementation strains, where only ctaG was deleted and re-introduced assayed for COX activity showed a restoration in activity to approx. 70 %. Further, calculating the heme:protein ratio, the deletion strains displayed a value of 7 nmol/mg of oxidase which was increased to wild type levels of 16 nmol/mg in the complementation strains. To further confirm the absence of the copper in subunit I, total reflection X-ray fluorescence spectroscopy analysis was carried out, which showed a decrease in the copper content in the deletion strain, restored on complementation. The strain lacking in the ORF and ctaG when complemented with ctaG alone illustrated no increase in activity or heme signal in comparison to that of the deletion strain. These point at a possible role for ORF in the assembly of COX, which is still absent in the complementation strains. To further characterize the ORF, a series of bioinformatical analysis was carried out, the results from which were insufficient to characterize the ORF conclusively. In order to enlist the proteins involved in the biosynthesis of COX, two independent approaches were employed. Two-dimensional gel examinations of solubilised membranes from untreated and cross-linked cells were analyzed by Western blotting. The CtaG-COX interaction was observed in untreated membranes, which was additionally strengthened by cross-linking. To further confirm this association, pull-down assays were done employing protein A coated magnetic beads coated with different antibodies and incubated with solubilised membranes derived from untreated or cross-linked cells. The elutions were assayed by Western blotting and confirmed for the CtaG-COX interaction. These fractions were further analysed by mass spectrometry to identify other chaperons involved in biogenesis of oxidase. Along with CtaG, I also noticed Sco, Surf1c and other factors involved in the recruitment and transport of heme (CtaB, CtaA, and Ccm proteins). Interestingly, protein components of both ribosomal subunits and protein translocation factors were observed, which indicated a co-translational approach for co-factor insertion into COX.
Structural determinants for substrate specificity of the promiscuous multidrug efflux pump AcrB
(2013)
Opportunistic Gram-negative pathogens such as Escherichia coli, Klebsiella pneumoniae, Acinetobacter Baumanii and Pseudomonas aeruginosa are becoming more and more multiresistant against many commonly available antibiotics [39, 40]. An important resistance mechanism of Gram-negative bacteria is the efflux of noxious compounds by tripartite systems [39, 41-44]. The best studied and most clinically relevant tripartite system is the AcrA-AcrB-TolC system of Escherichia coli, where substrate recognition and energy transduction takes place in the inner membrane protein AcrB. AcrB has a remarkably huge substrate spectrum and can recognize structurally diverse molecules, such as hexan in contrast to erythromycin, as its substrates [45]. Therefore, overproduction of the tripartite system can render a Gram-negative pathogen resistant against multiple antibiotics at once. The mechanisms of how AcrB is able to recognize such an enormous spectrum of molecules as substrates, without compromising its specificity (e.g. by neglecting essential compounds like lipids or gluclose as its susbtates), remained puzzling. Structural insight into substrate specificity was so far limited to two co-crystal structures of AcrB, where minocycline and doxorubicin, respectively, were identified bound to an internal binding pocket of AcrB. This binding pocket is particularly deeply buried into internal parts of the T monomer of AcrB and was, therefore, denoted deep binding pocket (DBP). Analysis of several AcrB co-crystal structures with substrate molecules bound to the DBP [4, 23, 25] indicated that the substrate promiscuity involved multisite binding modes within the DBP. Multisite binding modes, where different substrate molecules can bind to slightly different positions and orientations to the same binding pocket, is a common feature of multidrug recognizing proteins such as QacR or BmrR [27-29]. Nevertheless, AcrB's substrate spectrum is much broader than substrate spectra of most other multidrug recognizing proteins. Therefore, it is likely that additional mechanisms are involved in mediating the observed high substrate promiscuity of AcrB. In our recently published high-resolution AcrB/doxorubicin co-crystal structure (pdb entry: 4DX7 [23]) we were able to identify two additional substrate binding pockets in the L monomer of AcrB: i) the access pocket (AP), with an opening towards the periplasm, and ii) a putative binding site in a groove between transmembrane helices 8 and 9 (TM8/TM9 groove), accessible from the lipid layer of the inner membrane. Both binding pockets are likely to be access sites for substrates towards AcrB. Furthermore, each of the binding pockets are possibly specialized to recognize a specific subset of the entire substrate spectrum of AcrB, i.e. highly hydrophobic substrates (e.g. n-dodecyl-ß-d-maltoside or sodium dodecylsulfate) might access AcrB towards the TM8/TM9 groove and water soluble substrates (e.g. berberine) might access AcrB towards the AP. Since substrates will accumulate in the membrane or the periplasm according to their hydrophilic or hydrophobic nature, substrates will be "pre-selected" by the medium, rather than by the protein itself, and guided to their appropriate access site. This process is proposed to be called "medium- mediated pre-selection". The AcrB/doxorubicin co-crystal structure (pdb entry: 4DX7 [23]) furthermore revealed that the AP and DBP are in next neighborhood to each other and are separated by a switch loop. This switch loop adopts distinct conformations in the L, T and O monomers. Specific switch loop conformations are strongly involved in coordinating the selective occupation of both binding pockets, the AP and the DBP. The conformation of the switch loop in the L monomer (L-switch loop) opens the AP and closes the DBP, whereas the conformation of the switch loop in the T monomer (T-switch Loop) opens the DBP and closes the AP. An analysis of all asymmetric AcrB structures indicated that the L-switch loop is able to adopt multiple distinct conformations, whereas the conformation of T-switch loop remained largely congruent in all crystal structures. Moreover, each distinct switch loop conformation, observed in co-crystal structures of AcrB with occupied AP [4, 23], was perfectly adapted to the bound substrate molecule. Therefore, the putatively flexible switch loop is likely to act as an adaptive module and mediates a high binding pocket plasticity without altering the global protein structure. This binding mode is called adaptor-mediated binding mechanism, where an flexible adaptive module (like the switch loop) is able to adapt the surface shape of an binding pocket to different substrate molecules. Furthermore, structural and biochemical analyses of an AcrB G616N variant, revealed the involvement of specific switch loop conformations in the substrate specificity of AcrB. A substitution of G616, located on the switch loop, to N616 was able to alter the conformation of the switch loop exclusively in the L monomers of AcrB, whereas the switch loop conformations in T and O monomers remained congruent to the conformations observed in crystal structures of wildtype AcrB. Moreover, cells producing the AcrB G616N and MexB, both bearing the G616N amino acid substitution, exhibited a reduced resistance against certain substrates, whereas the resistance against most other substrates remained on the level of wildtype AcrB. Correlations of the phenotypes with minimal projection areas, a novel 2-spatiodimensional parameter which approximates the size of a substrate molecule, revealed that AcrB variants with a G616N substitution have a reduced efflux activity for exclusively large substrate molecules. The rejection of large substrates is most likely connected with altered L-switch loop conformations....
Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor and third leading cause of cancer-related death worldwide. Most cases arise as a consequence of underlying liver disease, e.g. developed from chronic hepatitis B or C infectionsalcohol abuse or obesity, and are most often associated with liver cirrhosis. Hypoxiand the hypoxia inducible factors (HIF)-1α and -2α promote tumor progression of HCC, not only affecting tumor cell proliferation and invasion, but also angiogenesis and lymphangiogenesis and thus, increasing the risk of metastasis.
HCC is characterized as one of the most vascularized solid tumors. While HIF-1α and HIF-2α are frequently up-regulated in HCC only HIF-2α is correlated with high patientlethality. HIF-dependent regulation of HCC angiogenesis is controversially discussed.VEGFA, for example, as the most prominent factor inducing tumor angiogenesis represents not only a HIF-1 target, but also a HIF-2 target gene in HCC. This questions whether both isoforms have overlapping functions in regulating the angiogenic switch in HCC.
Besides angiogenesis also tumor-associated lymphangiogenesis significantly influences patient survival in HCC. Lymphatic spread is an important clinical determinant for the prognosis of HCC, but little is known how lymphangiogenesis is controlled in this context. To date, mainly HIF-1α was positively correlated with olymphatic invasion and metastasis in HCC, while a defined role of HIF-2α is missing. Thus, although HIF-1α and HIF-2α are structurally alike and regulate overlapping but not identical sets of target genes, they promote highly divergent outcomes in cancer progression and may even have counteracting roles. The aim of my work was to characterize the specific role of HIF-1α and HIF-2α in the angiogenic switch and lymphangiogenesis induction during HCC development.
Therefore, I created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids and embryonic bodies derived from embryonic mouse stem cells as an in vitro tumor model mimicking the cancer microenvironment to analyze which HIF isoform has key regulatory functions in HCC (lymph)angiogenesis. In cocultures with a HIF-2α knockdown angiogenesis was attenuated but lymphangiogenesis increased, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1)and insulin-like growth factor binding protein 1 (IGFBP1) as HIF-2 target genes.However, prominent angiogenic and lymphangiogenic factors such as VEGFs, PDGFB, ANG and their receptors were not regulated in a HIF-dependent manner. As PAI-1 was linked to angiogenesis in literature and IGF-signaling, which is negatively regulated by IGFBP-1, was correlated with lymphangiogenesis, I decided to investigate their HIF-2α-dependent influence on HCC (lymph)angiogenesis. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis in PAI-1k/d cocultures similar to the HIF-2α k/d phenotype. PAI-1 as the potent inhibitor of tPA and uPA, both inducing the conversion of plasminogen to plasmin, also inhibits plasmin directly. Therefore, I assumed an increase of plasmin in HIF-2α k/d and PAI-1 k/d cocultures as a result of the reduced PAI-1 levels. Blocking plasmin with aprotinin in HIF-2α k/d cocultures restored angioge nesis, suggesting that HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. In further experiments I could exclude PAI-1 to reduce angiogenesis by inducing plasmin-mediated apoptosis of differentiating stem cells in PAI-1 k/d and HIF-2α k/d cocultures, but demonstrated an increase of VEGFA165 degradation in these cocultures, suggesting plasmin-catalyzed proteolysis of VEGF as an additional layer of regulation required to explain the angiogenic phenotype. Besides the pivotal role of PAI-1 in angiogenesis I also investigated its potentialinfluence in lymphangiogenesis. Indeed, the knockdown of PAI-1 reduced lymphaticstructures and implied an important but opposing role in lymphangiogenesis comparedto induced lymphangiogenesis in HIF-2α k/d cocultures. However, blocking plasmin again with aprotinin in HIF-2α k/d cocultures restored lymphangiogenesis to the level of control virus, which indicates a divergent lymphangiogenic role of plasmin in PAI-1 k/d and HIF-2α k/d cocultures, possibly because of other essential pathways masking the lymphangiogenic effects of PAI-1 in HIF-2α k/d cocultures.
HIF-2α resulting in reduced IGFBP1 expression induced the differentiation of stem cells toward a lymphatic cell type and significantly enhanced the assembly of human dermal lymphatic endothelial cells into tubes. These data point the first time to an important impact of HIF-2 in the regulatin of lymphangiogenesis in vitro by inducing IGFBP1 and thus, scavenging IGF-1. Furthermore, matrigel plug assays to investigate the in vivorelevance of these observations confirmed HIF-2α as a crucial factor in the regulation of lymphangiogenesis in vivo
In conclusion, this work provides evidence that HIF-2α is a key regulator of angiogenesis and lymphangiogenesis in HCC by regulating PAI-1 and IGFBP1. HIF-2α positively influences the angiogenic switch via PAI-1 and negatively affects lymphangiogenesis via IGFBP1 expression. Targeting HIF-2α in HCC to reduce tumor angiogenesis should be approached carefully, as it might be overcome by induced lymphangiogenesis and metastasis.
Bacteria are true artists of survival, which rapidly adapt to environmental changes like pH shifts, temperature changes and different salinities. Upon osmotic shock, bacteria are able to counteract the loss of water by the uptake of potassium ions. In many bacteria, this is accomplished by the major K+ uptake system KtrAB. The system consists of the K+-translocating channel subunit KtrB, which forms a dimer in the membrane, and the cytoplasmic regulatory RCK subunit KtrA, which binds non-covalently to KtrB as an octameric ring. This unique architecture differs strongly from other RCK-gated K+ channels like MthK or GsuK, in which covalently tethered cytoplasmic RCK domains regulate a single tetrameric pore. As a consequence, an adapted gating mechanism is required: The activation of KtrAB depends on the binding of ATP and Mg2+ to KtrA, while ADP binding at the same site results in inactivation, mediated by conformational rearrangements. However, it is still poorly understood how the nucleotides are exchanged and how the resulting conformational changes in KtrA control gating in KtrB is still poorly understood.
Here,I present a 2.5-Å cryo-EM structure of ADP-bound, inactive KtrAB, which for the first time resolves the N termini of both KtrBs. They are located at the interface of KtrA and KtrB, forming a strong interaction network with both subunits. In combination with functional and EPR data we show that the N termini, surrounded by a lipidic environment, play a crucial role in the activation of the KtrAB system. We are proposing an allosteric network, in which an interaction of the N termini with the membrane facilitates MgATP-triggered conformational changes, leading to the active, conductive state.
Life-saving pig-to-human xenotransplantation is a promising technology with the potential to balance the shortage of human organs in allotransplantation. Before this approach is applied on solid vascularized organs, several barriers must be overcome. Patient safety is menaced by infectious porcine endogenous retroviruses (PERV) which are able to infect human cell lines in vitro. Successful infection with PERV is associated with diverse life-threatening consequences including gene disruption, tumorigenicity, immune suppression as well as PERV proliferation throughout the whole human body. This could cause a catastrophic xenozonoosis leading to the emergence of new forms of pathogens and pandemic diseases similar to AIDS. However, in vivo, there is hitherto no incidence of any infection with PERV in preclinical xenotransplantations performed in the past.
PERV infection of human peripheral blood mononuclear cells (huPBMC) is a critical issue discussed controversially in several studies. It is essential to address the sensitivity of huPBMC to infection by PERV since it is generally one of the first retroviral targets upon viral invasion and infection of the human body. To assess definitely if huPBMC are infected productively by PERV, target cells were challenged with the highest infectious PERV class, recombinant PERV-A/C, in different assays. Modern and standard methods to detect PERV at different stages of viral cycles were used to monitor PERV development upon contact with host cells. Indeed, PERV-A/C in supernatants of producer cell lines failed to infect mitogen-activated huPBMC. Neither retroviral reverse transcriptase (RT) nor viral RNA packaged in virus particles were observed in supernatants of cells exposed to viral supernatants. In addition, provirus was not detected in huPBMC until 56 days p. i. with PERV-A/C. Independently of the virus load applied, culture conditions of huPBMC or administration of polybrene as enhancer, PERV was unable to infect huPBMC. Results suggest that PERV in supernatants lack sufficient infectious potential to be productively generated in huPBMC.
In order to approximate xenotransplantation scenarios, different PERV producing cells including PHA-activated porcine PBMC (poPBMC) were adopted as virus source in co-cultivation studies with huPBMC. In this case, expression of viral RNA was successfully measured. However, RT activity did not increase until 28 days p. e. with PERV producer cells which indicates that viral particles devoid of infectious capacity were released from non-productively infected cells.
On the other hand, co-cultivation of both virus producer and virus recipients increases the contact pressure between PERV and target cells. Consequently, PERV was able to be detected at least as provirus in huPBMC. Although virions produced were not functional, presence of provirus in infected cells will sooner or later provoke expression of provirus. This could lead to chromosomal rearrangements as well as virus reinfection and insertional mutagenesis.
Ecotropic PERV-C displays a restricted host range to porcine cells. Given its ability to serve as template to form recombinant xenotropic PERV-A/C, PERV-C represents a potent hazard in the course of xenotransplantation. Thus, isolation and functional characterization of PERV-C in the genome of pigs in use and intended for xenotransplantation is necessary to analyze the genetics of these virions as well as to select animals lacking proviral PERV-C or to generate transgenic PERV-C negative donors.
PERV-C was isolated from the genome of a female SLAd/d haplotype pig via screening of a bacteriophage library which was constructed from the genomic DNA of poPBMC extracted from this PERV non-transmitting sow. Upon genetic complementation of provirus using a PCR fragment infectious ability of full-length PERV-C clones was investigated in cell culture. PERV-C clones were successfully reproduced in susceptible porcine cells as RT activity as well as viral RNA were detected in supernatants of infected cells 56 days p. i. Furthermore, presence of proviruses in challenged cells was confirmed by nested PCR.
PERV-C clones were also isolated from a bacteriophage library generated on genomic DNA of an Auckland island pig of the DPF colony, whose individuals display a PERV-null phenotype and are already in use for xenotransplantation, and of a Göttingen minipig, whose relatives serve as animal models to study human diseases. In contrast to PERV clones isolated from the female SLAd/d haplotype sow PERV-C clones of the Auckland island pig as well as of the Göttingen minipig were not functional and therefore unable to infect target cells. This confirms the PERV-null phenotype which renders these animals putative candidates as donors in xenotransplantation. On the other hand, presence of functional PERV-C in SLAd/d haplotype pigs exerts a negative impact on patient safety in xenotransplantation. The suitability of these animals as potent organ donors should be intensively investigated.
In conclusion, PERV of all classes pose a virological risk in xenotransplantation which should not be ignored. Since exclusion of all PERV from donor herds is impossible, generation of transgenic humanized animals lacking genomic infectious PERV represents the best strategy to guarantee patient safety in future life-saving pig-to-human xenotransplantation.
Acinetobacter baumannii is a worldwide opportunistic pathogen responsible for nosocomial infections. One of the main factors contributing to multidrug resistance in A. baumannii is the upregulation of various chromosomally encoded or acquired efflux pumps, which expel toxic compounds out of the cells with high efficiency.
The resistance-nodulation-cell division (RND)-type efflux pump gene deletion strains ∆adeAB, ∆adeFG or ∆adeIJ and the major facilitator superfamily (MFS) chloramphenicol efflux pump gene deletion strain ∆craA of A. baumannii ATCC 19606 were created and a differential gene expression study was conducted via RT-qPCR. The expression of efflux pump genes adeB, adeG, adeJ, craA, and the outer membrane protein ompA were examined in the absence and presence of chloramphenicol. No significant up- or downregulation of these genes for any of these deletion strains in comparision to the wild-type strain in absence of the drug chloramphenicol.
In contrast, craA was significantly up-regulated in A. baumannii exposed to chloramphenicol, emphasizing the importance of CraA in chloramphenicol resistance. CraA is widely present in clinical isolates of A. baumannii. It is homologous to the well-studied multiple-drug efflux transporter MdfA from Escherichia coli (61% similarity), but surprisingly reported to be acting as a specific chloramphenicol transporter of A. baumannii (Roca et al., 2009).
The drug susceptibility assay done with A. baumannii ATCC 19606 ΔcraA showed that CraA could confer resistance towards phenicols (chloramphenicol, thiamphenicol, and florfenicol), which was in line with the previous report. CraA was heterologously overproduced in E. coli BW25113 ∆emrE∆mdfA and its substrate specificity was determined by drug susceptibility assays and whole cell fluorescent dye uptake experiments. We observed that the substrate specificity of craA overexpressed in E. coli was more diverse and resembling that of the E. coli MdfA homolog. Apart from resistance towards phenicols (chloramphenicol, thiamphenicol, and florfenicol), CraA also confer resistance towards monovalent cationic drugs (benzalkonium, TPP+, and ethidium), long dicationic drugs (dequalinium and chlorhexidine), fluoroquinolones (norfloxacin and ciprofoxacin) and anticancer drugs (mitomycin C). We showed that CraA is a drug/H+ antiporter by ACMA quenching in inverted CraA or CraA variant containing membrane vesicles.
To address the molecular determinants for multidrug binding and transport, 45 mostly single Ala-substitution variants of CraA were created. These include substitution variants for membrane-embedded proton-titratable residues (E38, D46, and E338) and residues predicted to be important for binding and transport of drug, as inferred from docking experiments on basis of a MdfA-derived CraA model. The combined results indicated a high degree of functional similarities between MdfA and CraA. The conserved titratable residues E26 and D34 (E38 and D46 in CraA) are important for transport in both these homologs. The CraA variant E38A is inactive against all tested drugs, but D46A is only inactive for some drugs, suggesting that only E38 is involved in H+-transport.
Another focus of this thesis is the three tetracycline transporters of A. baumannii strain AYE, TetA, TetG and TetA(A). Susceptibility assays involving tetracycline, minocycline, doxycycline and the last-resort antibiotic tigecycline were conducted on E. coli BW25113 ∆emrE∆mdfA overexpressing these transporters. TetA(A) was excluded from further study due to toxicity of the cells caused by protein overexpression. Both TetA and TetG confer resistance against tetracycline, minocycline and doxycycline. Although tigecycline was reported not to be recognized by tetracycline efflux pumps, we surprisingly found that TetA is able to transport tigecycline. The role of TetA in tigecycline efflux in A. baumannii was confirmed by conducting tigecycline susceptibility assays on A. baumannii.
We speculate that TetA embedded in the inner membrane acts in cooperation with RND-type tripartite systems that span the inner and outer membrane to extrude tigecycline from the periplasm across the outer membrane. A. baumannii ATCC 19606 ∆adeAB were indeed sensitive to tigecycline in comparison to wild-type strain. Deletion of adeIJ also leads to sensitivity to tigecycline, but less so compared to the DadeAB phenotype, while A. baumannii ATCC 19606 ∆adeFG did not show any difference compared to wild-type strain in tigecycline susceptibility. Differential gene expression analysis of the RND efflux pumps (adeB, adeG and adeJ) and tetA of A. baumannii strain AYE showed that the expression of tetA expression is significantly upregulated when tigecycline is present in the growth medium.
We conclude that craA encodes a broad-spectrum efflux pump rather than a specific chloramphenicol transporter. In A. baumannii, the synergistic effects with the outer membrane and/or the presence of other transporters could result in the discrepancy observed. Thus, the possibility of CraA in conferring multidrug resistance should not be overlooked, especially when it is up-regulated under antibiotic stress conditions.
Specialized transporter proteins facilitate controlled uptake and extrusion of molecules across biological membranes that would otherwise be impermeable to them. The superfamily of solute carriers (SLC) comprises the second largest group of membrane proteins in humans, acting on a variety of small polar and non-polar molecules and ions. Because of their central role in metabolism, malfunctioning of these proteins often is pathogenic. The interest in SLC transporters as drug targets – as well as for drug delivery – has therefore increased in the past years. For many SLC subfamilies, however, structural and functional information remains scarce to date.
The here presented data provides important insights into different aspects of the transport mechanism of the SLC23 and SLC26 protein families. Importantly, we show that SLC23 nucleobase transporters, in contrast to what was been previously reported, work as uniporters rather than as proton-coupled symporters. In order to do so, we developed the first and only in vitro transport assay for the SLC23 family, which enables investigation of protein function in a defined environment. Moreover, we provide a hypothesis on the role of the extremely conserved negative charged substrate binding site residue found not only in the SLC23, but also SLC4 and SLC26 families. Based on a detailed analysis of binding and transport we conclude that this conserved negative charged has a relevance for protein stability rather than for substrate binding, which explains its conservation for all three protein families that otherwise differ in their substrate specificities and modes of transport. Lastly, we investigated the relevance of oligomerization for the SLC23 and SLC26 families, highlighting the importance of the STAS domain for forming active dimers in the SLC26 anion transporter family.