Refine
Year of publication
Document Type
- Doctoral Thesis (232) (remove)
Language
- English (153)
- German (78)
- Multiple languages (1)
Has Fulltext
- yes (232)
Is part of the Bibliography
- no (232)
Keywords
- Arzneimittel (2)
- DNA (2)
- EPR (2)
- G-Quadruplex (2)
- GPCR (2)
- Metabolism (2)
- NMR (2)
- Photolabile Schutzgruppen (2)
- RNA (2)
- Wirkstofffreisetzung (2)
Institute
- Biochemie, Chemie und Pharmazie (232) (remove)
Focused electron and ion beam induced deposition (FEBID/FIBID) methods have gained significant attention in recent years because of their unique ability for the maskless fabrication of arbitrary three-dimensional shapes. Both techniques enable material deposition down to the nanoscale for applications in materials science and condensed matter physics. However, the number of suitable precursor molecules, especially for high purity deposits, is usually still very limited to date. Additionally, both the FEBID and FIBID process are very complex when assessed in detailed and the development of process-optimize, tailored precursor molecules is not yet possible.
In the first part of this work hexacarbonyl vanadium (V(CO)6) and dimanganese decacarbonyl (Mn2(CO)10) are investigated for their use in FEBID in order to complement the already existing data on transition metal carbonyl precursors. In addition, chemical vapor deposition (CVD) has been carried out to compare compositional differences for electron induced and purely thermal processes. FEBID using V(CO)6 resulted in the formation of a vanadium (oxy)carbide material with a V:C ratio of approx. 0.6-0.9. The material shows a temperature-dependent normalized electrical conductance typical for granular metals in agreement with TEM analysis. Additionally, characterization of the crystalline fractions reveals a cubic VC1-xOx phase in agreement with the phase observed in CVD thin films. Thermal decomposition using CVD yielded material of higher purity with V:C ratios of 1.1-1.3. In contrast, an insulating material with approx. 40 at% Mn is obtained for FEBID using Mn2(CO)10 as precursor with very similar compositions being observed for CVD thin films.
The second part of this work deals with the deposition of defined alloy materials by focused charged particle beam deposition. Three silyl substituted transition metal carbonyl complexes have been synthesized and tested for FEBID, FIBID and CVD. The three precursors investigated were: H3SiMn(CO)5, H3SiCo(CO)4, and H2Si(Co(CO)4)2. FEBID experiments with the manganese derivative show the selective loss of silicon, and metal/metalloid contents of up to 49 at%. Contrary, material derived from both cobalt derivatives did retain the 1:1 and 2:1 Co:Si ratios respectively, resulting in metal/metalloid contents of up to 62 at%. Temperature-dependent normalized electrical conductance measurements of as-grown and post-growth electron beam irradiated samples reveal behavior typical for granular metals except for the as-grown CoSi material which is located on the insulating side of the metal-insulator transition. Ga+-FIBID revealed H2Si(Co(CO)4)2 to be a very suitable precursor, retaining the predefined Co:Si ratio in the deposits, while significant loss of silicon was observed for H3SiCo(CO)4 derived deposits. Contrary to FEBID high metal/metalloid contents of up to 90 at% are obtained. Additionally, temperature dependent electrical properties of dicobalt silicide and the expected ferromagnetic behavior have been observed for the Co2Si-FIBID material. Further analysis enables the proposition of different dominating decomposition channels in FEBID and FIBID based on microstructural features such as bubble formation in FIBID materials.
As one of the most widespread infectious diseases in the world, it is currently estimated that approximately 296 million people globally are chronically infected with Hepatitis B virus (HBV), the consequences of HBV infection cause more than 620,000 deaths each year. Although safe and effective HBV vaccines have reduced the incidence of new HBV infections in most countries, there are still around 1.5 million new infections each year. HBV remains a major health problem because there is no large-scale effective vaccination strategy in many countries with a high burden of disease, many people with chronic HBV infection are not receiving effective and timely treatment, and a complete cure for chronic infection is still far from being achieved.
Since its discovery, HBV has been identified as an enveloped DNA virus with a diameter of 42 nm. For efficient egress from host cells, HBV is thought to acquire the viral envelope by budding into multivesicular bodies (MVBs) and escape from infected cells via the exosome release pathway. It is clear that HBV hijacks the host vesicle system to complete self-assembly and propagation by interacting with factors that mediate exosome formation. Consequently, the overlap with exosome biogenesis, using MVBs as the release platform, raises the possibility for the release of exosomal HBV particles. Currently, virus containing exosomal vesicles have been described for several viruses. In light of this, this study explored whether intact HBV-virions wrapped in exosomes are released by HBV-producing cells.
First, this study established a robust method for efficient separation of exosomes from HBV virions by a combination of differential ultracentrifugation and iodixanol density gradient centrifugation. Fractionation of the density gradient revealed that two populations of infectious viral particles can be separated from the culture fluids of HBV-producing cells. The population present in the low-density peak co-migrates with the exosome markers. Whereas the population that appeared in the high-density fractions was the classical HBV virions, which are rcDNA-containing nucleocapsids encapsulated by the HBV envelope.
Subsequently, the characterization of this low-density population was performed, namely the highly purified exosome fraction was systematically investigated. Relying on the detergent sensitivity of the exosome membrane and the outer envelope of the HBV virus, disruption of the exosome structure by treatment with limited detergent revealed the presence of HBsAg in the exosomes. At the same time, mild and limited NP-40 treatment of highly purified exosomes and a further combination of density gradient centrifugation resulted in the stepwise release of intact HBV virions and naked capsids from the exosomes generated by HBV-producing cells. This implies the presence of intact HBV particles encapsulated by the host membrane.
The presence of exosome-encapsulated HBV particles was consequently also verified by suppressing the morphogenesis of MVBs or exosomes. Impairment of MVB- or exosome-generation with small molecule inhibitors has significantly inhibited the release of host membrane-encapsulated HBV particles as well. Likewise, silencing of exosome-related proteins caused a diminution of exosome output, which compromised the budding efficiency of wrapped HBV.
Moreover, electron microscopy images of ultra-thin sections combined with immunogold staining visualized the hidden virus in the exosomal structure. Additionally, the presence of LHBs on the surface of exosomes derived from HBV-expressing cells was also observed.
As expected, these exosomal membrane-wrapped HBV particles can spread productive infection in differentiated HepaRG cells. In HBV-susceptible cells, as LHBs on the membrane surface, this type of exosomal HBV appeared to be uptaken in an NTCP receptor-dependent manner.
Taken together these data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV. Exosomes hijacked by HBV act as a transporter impacting the dissemination of the virus.
The majority of B-cell precursor acute leukemias in infants are associated with the chromosomal translocation t(4;11)(q21;q23), resulting in the fusion of the mixed-lineage leukemia (MLL) and ALL1-fused gene of chromosome 4 (AF4) genes. While the fusion protein MLL-AF4 is expressed in all t(4;11) patients and essential for leukemia progression, the distinct role of the reciprocal fusion protein AF4-MLL, that is expressed in only 50-80% of t(4;11) leukemia patients (Meyer et al., 2018), remains unclear. In addition, t(4;11) leukemia could so far exclusively be generated in vivo in the presence of AF4-MLL and independent of the co-expression of MLL-AF4 (Bursen et al., 2010).
In a multifactorial approach inhibiting histone deacetylases (HDACs) and expressing the dominant negative mutation of Taspase1 (dnTASP1), both MLL fusion proteins were targeted simultaneously to evaluate a possible cooperative effect between MLL-AF4 and AF4-MLL during the progression of leukemia. Of note, neither HDACi nor dnTASP1 expression negatively affect endogenous MLL, but rather endorse its function hampered by the MLL fusion proteins (Ahmad et al., 2014; Bursen et al., 2004; Zhao et al., 2019). The mere expression of dnTASP1 failed to induce apoptosis, whereas dnTASP1 could elevate apoptosis levels significantly in HDACi-treated t(4;11) cells underlining the therapeutic potential of co-inhibiting both MLL fusion proteins.
Next, the impact of inhibiting either MLL-AF4 or AF4-MLL in vivo was resolved using whole transcriptome analysis. In PDX cells obtained by the Jeremias Laboratory (Völse, 2020) that co-expressed both t(4;11) fusion proteins, the knock-down of MLL-AF4 revealed the down-regulation of pivotal hemato-malignant factors. The expression of dnTASP1 led to massive deregulation of cell-cycle genes in vivo. Considering that the inhibition of particularly MLL-AF4 but not AF4-MLL impaired leukemic cell growth in vivo (Völse, 2020), the results of this work suggest a cooperative effect between both fusion proteins, while the loss of AF4-MLL during leukemia progression appears not essential.
Thereafter, a possible short-term role of AF4-MLL during the establishment of t(4;11) leukemia was analyzed. For this purpose, an in vitro t(4;11) model was constructed to investigate the transforming potential of transiently expressed AF4-MLL in cells constitutively expressing MLL-AF4, putatively reflecting the situation in vivo. Due to the lack of a leukemic background of the applied cell line, the aim was to investigate the long-term potential of AF4-MLL to significantly alter the epigenome rather than mimicking the development of leukemia. Strikingly, short-term-expressed AF4-MLL in cooperation with MLL-AF4 exerted durable epigenetic effects on gene transcription and chromatin accessibility. The here obtained in vitro data suggest a clonal evolutionary process initiated by AF4-MLL in a cooperative manner with MLL-AF4. Importantly, no long-term changes in chromatin accessibility could be observed by the transient expression of either MLL-AF4 or AF4-MLL alone.
All in all, considering endogenous MLL, MLL-AF4 and AF4-MLL in a targeted treatment is a promising approach for a more tailored therapy against t(4;11) leukemia, and AF4-MLL is suggested to act in a cooperative manner with MLL-AF4 especially during the development of a t(4;11) leukemia.
The health status of every nucleated cell in the human body is monitored through peptides presented by major histocompatibility complex class I (MHC I) to T-cell receptors of CD8+ T-cells. Thereby, the adaptive immune system ensures the recognition and elimination of infected or cancerous cells. MHC I molecules comprise the polymorphic heavy chain (hc) and the light chain β2-microglobulin (β2m). More than 13,000 allomorphs of the MHC I hc have been identified. All MHC I hcs associate with β2m but differ in their binding preferences for peptides, ensuring the presentation of a large peptide pool. After maturation of MHC I hc/β2m heterodimers in the endoplasmic reticulum (ER), most of the peptide-deficient MHC I molecules are recruited to the peptide-loading complex (PLC). There, they go through peptide loading and editing before they are released as stable peptide-MHC I (pMHC I) complexes and traffic to the cell surface for antigen presentation.
During the stringent quality control of MHC I peptide loading and editing within the PLC, the chaperone tapasin in conjunction with the oxidoreductase ERp57 stabilizes peptide-receptive MHC I molecules and alters the peptide cargo for high immunogenicity by catalyzing peptide-exchange. The tapasin-homologue TAP-binding protein related (TAPBPR) is involved in downstream quality control, editing the peptide repertoire of MHC I molecules that slipped through peptide proofreading by tapasin. Both chaperones were shown to adopt similar binding-modes for MHC I, suggesting related mechanisms of peptide editing. Nevertheless, the MHC I specific chaperones operate in different subcellular locations with differing assistance. While TAPBPR mediates peptide-exchange solely in the peptide-poor environment of the cis-Golgi and ER-Golgi intermediate compartment (ERGIC), tapasin functions mainly within the PLC together with ERp57 and the lectin-like chaperone calreticulin. Calreticulin with its lectin-, arm- and C-terminal domain contacts the MHC I heterodimer, ERp57 and the C-terminal domain of tapasin, respectively. Notably, the interaction site between calreticulin and tapasin has not yet been elucidated experimentally at molecular detail. The depletion of tapasin leads to a compromised immune response and a change in the pool of peptide cargo. The numerous MHC I allomorphs vary in their plasticity and their dependence on tapasin for the loading of optimal peptides. Moreover, the conformational plasticity of MHC I correlates with their dependence on tapasin. However, the molecular basis on how tapasin edits the various MHC I allomorphs and the structural features that are essential for peptide exchange catalysis at atomic resolution remained elusive.
In the first part of this thesis, the trimeric complex of tapasin–ERp57/calreticulin was analyzed. To this end, laser induced liquid bead ionization mass spectrometry (LILBID-MS) was performed as part of a collaboration and revealed the trimeric assembly for tapasin–ERp57 and calreticulin. Furthermore, additional to a wildtype construct of calreticulin, a second construct, lacking the acidic helix of calreticulin that was found to come to close contact with tapasin, was utilized for isothermal titration calorimetry (ITC). A micromolar affinity of wildtype calreticulin to tapasin–ERp57 was determined. Previous biochemical and NMR studies utilizing the P-domain of calreticulin and solely ERp57 provided a micromolar affinity for the complex of calreticulin and ERp57. In this study, no interaction of calreticulin lacking the acidic helix with tapasin–ERp57 could be measured by ITC. However, these results undergo with findings that calreticulin lacking the acidic helix impairs the function of the PLC. Most likely, the negatively charged acidic helix is located in a groove of tapasin, carrying a more positive charge. Taken together, the functional data demonstrates the importance of the acidic helix of calreticulin for assembly of the trimeric subunit of calreticulin/tapasin–ERp57.
In the main part of this study an MHC I–tapasin–ERp57 complex was structurally analyzed. Therefore, a photo-triggered approach was chosen to assemble the transient complex of MHC I–tapasin–ERp57. Various allomorphs were screened for complex formation with the tapasin–ERp57 heterodimer after photocleavage by size exclusion chromatography (SEC), resulting in mouse MHC I H2-Db as the suited allomorph. Microseed matrix screening was performed. Crystals diffracting X-rays to a resolution of 2.7 Å were obtained showing one tetrameric tapasin–ERp57–MHC I complex per asymmetric unit.
The MHC I-chaperone structure shows molecular rearrangements upon MHC I engagement and unveils structural features of tapasin, involved in peptide-exchange catalysis...
Die Fähigkeit der spezifischen und kontextabhängigen zellulären Adaption auf intrinsische und/oder extrinsische Signale ist das Fundament zellulärer Homöostase. Verschiedene Signale werden von Membranrezeptoren oder intrazellulären Rezeptoren erkannt und ermöglichen die molekulare Anpassung zellulärer Prozesse. Komplexe, ineinandergreifende Proteinnetzwerke sind dabei elementar in der Regulation der Zelle. Proteine und deren Funktionen werden dabei nach Bedarf reguliert und unterliegen einem ständigen proteolytischen Umsatz.
Die stimulusabhängige Gentranskription und/oder Proteintranslation nimmt hier eine zentrale Stellung ein, da die zugrundeliegende Maschinerie die Komposition und Funktion der Proteinnetzwerke entsprechend anpassen kann. Zusätzlich zur Regulation der Proteinabundanz werden Proteine posttranslational modifiziert, um deren Eigenschaften rasch zu ändern. Zu posttranslationalen Modifikationen zählen die Ubiquitinierung und/oder Phosphorylierung, welche die Proteinfunktionen hochdynamisch regulieren. Deregulierte Proteinnetzwerke werden oft mit Neurodegeneration und Autoimmun- oder Krebserkrankungen assoziiert. Auch Infektionen mit humanpathogenen Bakterien greifen stark in den Regulierungsprozess von Proteinnetzwerken und deren Funktionen ein. Die zelluläre Homöostase wird dadurch herausgefordert.
Bakterien der Gattung Salmonella sind zoonotische, gramnegative, fakultativ intrazelluläre Pathogene, welche weltweit millionenfach Salmonellen-erkrankungen hervorrufen. Von besonderer Bedeutung ist dabei Salmonella enterica serovar Typhimurium (hiernach Salmonella), welches im Menschen, meist durch mangelnde Hygienemaßnahmen, Gastroenteritis auslöst.
Immunität in Epithelzellen wird über das angeborene Immunsystem vermittelt und dient der Pathogenerkennung und -bekämpfung. Die Toll-like Rezeptoren (TLR) gehören zu den Mustererkennungsrezeptoren (pattern recognition receptors), welche spezifische mikrobielle Strukturen detektieren und eine kontextabhängige zelluläre Antwort generieren. Danger-Rezeptoren erkennen hingegen nicht direkt das Pathogen, sondern zelluläre Perturbationen, welche durch Zellschäden oder bakterielle Invasionen verursacht werden. Die intrinsische Fähigkeit der Wirtszelle, sich gegen Infektionen/Gefahren zu wehren wird dabei als zellautonome Immunität bezeichnet. Dabei nehmen induzierte proinflammatorische Signalwege und zelluläre Stressantworten eine wichtige Stellung ein. Die zelluläre Stressantwort aktiviert unter anderem die selektive Autophagie. Diese kann spezifisch aberrante Organelle, Proteine und invasive Pathogene abbauen. Ein weiterer Stresssignalweg ist die integrated stress response (ISR), welche eine selektive Proteintranslation erlaubt und damit die Auflösung des proteintoxischen Stresses ermöglicht.
Zur Penetration von Epithelzellen benötigt Salmonella ein komplexes System an Virulenzfaktoren, welches die bakterielle Internalisierung und Proliferation in der Wirtszelle ermöglicht. Salmonella nutzt dazu ein Typ-III-Sekretionssystem. Das System sekretiert bakterielle Virulenzfaktoren in die Zelle, sodass eine hochspezifische Modulierung des Wirtes erzwungen wird.
Die Virulenzfaktoren SopE und SopE2 spielen dabei eine Schlüsselrolle, da sie die Pathogenität von Salmonella maßgeblich vermitteln. Durch molekulare Mimikry von Wirts GTP (Guanosintriphosphat) -Austauschfaktoren aktivieren SopE und SopE2 die Rho GTPasen CDC42 und Rac1. GTP-geladenes CDC42 und Rac1 wiederum aktivieren das Aktinzytoskelett und stimulieren die Polymerisierung von Aktinfilamenten über den Arp2/3-Komplex an der Invasionsstelle. Das Pathogen wird dadurch in ein membranumhülltes Vesikel, die sogenannte Salmonella-containing Vakuole (SCV), aufgenommen. Die SCV stellt eine protektive, replikative, intrazelluläre Nische des Pathogens dar und wird permanent durch verschiedene Virulenzfaktoren moduliert.
Im Allgemeinen führt die Aktivierung von Mustererkennungsrezeptoren und Danger-Rezeptoren also zu einer zellulären Stressantwort und Entzündungsreaktion, wodurch es zur Bekämpfung der Infektion kommt. Inflammatorische Signalwege werden meist über den zentralen Transkriptionsfaktor NF-κB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells) vermittelt. NF-κB bewirkt die Induktion von proinflammatorischen Effektoren und Stressgenen. Zellautonome Immunität wird zusätzlich durch antibakterielle Autophagie ermöglicht, wobei Salmonella selektiv über das lysosomale System abgebaut werden. Das bakterielle Typ-III-Sekretionssystem verursacht an einigen wenigen SCVs Membranschäden, sodass Salmonella das Wirtszytosol penetrieren. Zytosolische Bakterien werden dabei spezifisch ubiquitiniert. Dies erlaubt die Erkennung durch die Autophagie-Maschinerie.
In der vorliegenden Arbeit wurde die zellautonome Immunität von Epithelzellen während einer akuten Salmonella Infektion durch quantitative Proteomik untersucht...
Die vorliegende Dissertation stellt eine Methode zur Löslichkeitsbestimmung vor, die für die Anwendung im Rahmen von BCS-Biowaiver Monografien entwickelt wurde. Der Methode und dem dafür konzipierten Studienprotokoll liegt das Prinzip der „Minimallöslichkeit“ zugrunde. Damit lässt sich einfach, kosteneffizient und wissenschaftlich verlässlich feststellen, ob ein Arzneistoff „hochlöslich“ gemäß den BCS-Biowaiver Richtlinien der Gesundheitsbehörden FDA, EMA und WHO ist und sich dementsprechend generische Produkte des Arzneistoffs grundsätzlich für das BCS-Biowaiver Zulassungsverfahren eignen.
Dieses Verfahren für die Zulassung von Generika erlaubt die Beurteilung der Bioäquivalenz eines festen generischen Arzneimittels zur peroralen Anwendung auf Basis von in vitro-Freisetzungsuntersuchungen anstatt von in vivo-Studien wie z.B. pharmakokinetischen Studien am Menschen und erleichtert dadurch eine Marktzulassung sowohl durch Zeit- als auch Kosteneinsparung. Die Anwendung des Verfahrens ist von Vorteil, um die Verfügbarkeit von qualitativ hochwertigen, generischen (und damit kostengünstigen) Arzneimitteln zu erhöhen. Dies ist besonders wünschenswert für die Verfügbarkeit von gemäß der Weltgesundheitsorganisation essenziellen Arzneistoffen und unter denen gerade von solchen, die zur Bekämpfung von Krankheiten mit nur wenigen und/oder teuren therapeutischen Alternativen benötigt werden.
Entstanden ist die Löslichkeitsbestimmungsmethode im Rahmen von zwei Projekten, die beide zu diesem Ziel einer guten globalen Gesundheitsversorgung beitragen: die Erstellung der Biowaiver Monografien von Proguanilhydrochlorid (ein Malaria-Prophylaktikum) und Cefalexinmonohydrat (ein Antibiotikum aus der Gruppe der Cephalosporine) setzt die Publikationsreihe „Biowaiver Monograph Series“ der FIP Focus Group „Bioclassification/Biowaiver“ fort. Jede Monografie gibt eine umfassende wissenschaftliche Empfehlung zur Eignung eines Wirkstoffs der WHO „Model List of Essential Medicines“ und seiner generischen Produkte für das BCS-Biowaiver Verfahren hinsichtlich aller regulatorisch geforderten Aspekte ab. Proguanilhydrochlorid (BCS Klasse III – „hochlöslich“ und nicht „hoch permeabel“) und Cefalexinmonohydrat (BCS Klasse I – „hochlöslich“ und „hoch permeabel“) sind beide für dieses Zulassungsverfahren geeignet.
Im Zuge des anderen Projektes wurde die Löslichkeit und anschließend die BCS Klasse von Wirkstoffen bestimmt, die der 16. und 17. Version der WHO „Model List of Essential Medicines“ neu hinzugefügt wurden. Neun von 16 untersuchten Wirkstoffen, die in feste, perorale Arzneimittel formuliert werden können, sind im Hinblick auf ihre BCS Klasse für das eine Zulassung per BCS-Biowaiver geeignet. Eine umfangreichere Empfehlung könnte im Rahmen einer Biowaiver Monografie gegeben werden.
Die experimentelle Bestimmung der Löslichkeit über einen pH-Wert-Bereich von 1-6,8 war essenzieller Bestandteil beider Projekte, da Literaturdaten zur Löslichkeit der Wirkstoffe nicht oder nur unvollständig vorlagen. Die entwickelte Methode basiert auf einer im Kleinmaßstab angesetzten „Shake-Flask“-Methode zur Bestimmung der thermodynamischen Löslichkeit, wird jedoch in einem Zeitrahmen von 24 Stunden durchgeführt. Sie nutzt die höchste Dosis der Wirkstoffe als Substanzmenge, um zu bestimmen, ob dieser „hochlöslich“ gemäß den BCS-Biowaiver Richtlinien ist oder nicht. Die Methode bzw. das dazugehörige Studienprotokoll beinhalten Empfehlungen zu den einzelnen Schritten der Durchführung, der Auswahl der Medien und Herausforderungen wie Präzipitation (Fallbeispiel: Proguanilhydrochlorid) und Zersetzungsreaktionen (Fallbeispiel: Cefalexinmonohydrat). Löslichkeitsdaten, die mit dieser Methode erhoben werden, können für eine Zulassung per BCS-Biowaiver bei den Gesundheitsbehörden eingereicht werden, aber auch für ein Vorab-Screening genutzt werden, dass „hochlösliche“ Arzneistoffe aus einer Vielzahl von Substanzen herauszufiltern soll, um nähere Untersuchungen im Rahmen einer Biowaiver Monografie anzuschließen.
Im Rahmen dieser vorliegenden Thesis wurden verschiedene photosensitive Systeme anhand statischer und zeitaufgelöster optischer Spektroskopiemethoden charakterisiert. Das Hauptaugenmerk dieser Arbeit lag in der Entwicklung und Untersuchung neuer Quantenpunkt-basierter Hybridsysteme. Es war möglich die optischen Eigenschaften der Quantenpunkte über Optimierung der Syntheseschritte zu variieren und so auf geplante Projekte anzupassen.
Im Projekt „Quantenpunkte als Zwei-Photonen Antenne“ sollten die hohen Zwei-Photonen Einfangquerschnitte von Quantenpunkten ausgenutzt werden um in Kombination mit einer photolabilen Schutzgruppe, ein Uncaging im NIR-Bereich zu realisieren. Es wurden ZnSe/ZnS Partikel synthetisiert, die eine starke Emission im Bereich der Absorption der Schutzgruppe zeigen. Anhand von zeitaufgelösten transienten Absorptionsexperimenten mit einer Anregungswellenlänge bei 775 nm wurde eine Zwei-Photonen Absorption der Partikel nachgewiesen. Jedoch wurden starke Emissionsbeiträge aus Fallenzuständen und eine geringe Stabilität beobachtet. Die Synthese von CdS/ZnS Quantenpunkten lieferte stabile Partikel mit geringer trap state Emission. Diese Partikel wurden in einem Modellhybridsystem als Energiedonoren eingesetzt. Als Akzeptor wurde der Farbstoff Cumarin343 gewählt. In statischen Absorptions- und Emissionsmessungen, zeitkorrelierten Einzelphotonenmessungen sowie in fs-zeitaufgelösten transiente Absorptionsmessungen konnte ein ultraschneller Energietransfer nach Ein-Photonen Anregung des Hybridsystems beobachtet werden. Über TPiF Messungen wurde die Zwei-Photonen Absorption der Quantenpunkte detektiert. Ein Energietransfer nach Zwei-Photonen Anregung der Quantenpunkte wurde beobachtet. Schließlich wurde ein Hybridsystem aus CdS/ZnS und der photolabilen Schutzgruppe Az-NDBF (Synthese im AK Heckel, Goethe Universität, Frankfurt a. M.) untersucht. Auch in diesem System wurde ein Energietransfer von Quantenpunkt auf die Schutzgruppe nach Ein- und Zwei-Photonen Anregung beobachtet. Anhand von TA Experimenten wurde eine Zeitkonstante von <100 ps für den Energietransfer nach Ein-Photonen Anregung ermittelt. Es konnte anhand der vorgestellten Resultate gezeigt werden, dass sich Quantenpunkte, aufgrund der guten Anpassung ihrer optischen Eigenschaften generell sehr gut als Antennen für organische Verbindungen eigenen.
Des Weiteren wurde ein Hybridsystem aus CdSe/ZnS Quantenpunkten und einer Dyade (Verbindung eines DTE Photoschalters und BODIPY Derivats), entworfen und charakterisiert. Ein ultraschneller EET von BODIPY auf den geschlossenen DTE Schalter wurde in vorangegangenen Studien beobachtet. Dieser EET führte zur Löschung der BODIPY-Emission. Sobald der Photoschalter im offenen Zustand vorliegt, findet aufgrund des fehlenden spektralen Überlapps kein EET statt und es wird die BODIPY-Emission detektiert. Die Erweiterung der Dyade um einen Quantenpunkt zeigte nach Anregung des Quantenpunkts dessen Fluoreszenzlöschung. Da die Emissionsbande der Quantenpunkte im Absorptionsbereich des BODIPY Farbstoffes liegt, konnte über statische und zeitaufgelöste Experimente ein ultraschneller EET von CdS/ZnS auf den Farbstoff ermittelt werden. Dies führte zu der Erweiterung des Anregungsspektrums des BODIPY Farbstoffs. Die Kopplung der Dyade an die Quantenpunktoberfläche lieferte eine Verbindung mit dem breiten Anregungsspekrum des Quantenpunkts und der schaltbaren Fluoreszenz der Dyade.
Das Hybridsystem aus CdSe Quantenpunkten und PDI zeigte vom Verhältnis der Quantenpunkte zu gekoppelten PDI Molekülen abhängige Fluoreszenzsignale. In TA Experimenten wurde ein ultraschneller EET ermittelt. Für hohe PDI Konzentrationen wurde ein weiterer EET von höher angeregten Elektronen auf das PDI identifiziert. Neben der EET Charakterisierung konnte ein zusätzlicher Prozess innerhalb des Hybridsystems mit hoher PDI Konzentration beobachtet werden. Auf den EET von Quantenpunkt auf PDI folgt ein ET aus dem Valenzband des Quantenpunkts in das HOMO des PDI*. In vorangegangene Arbeiten zu Hybridsystemen aus CdSe/ZnS und PDI wurde kein ET beobachtet. In dem beschriebenen Projekt konnte der Einfluss einer passivierenden Schale auf die elektronischen Eigenschaften von CdSe Quantenpunkten gezeigt werden.
Im letzten Teil dieser Thesis wurde die spektroskopische Charakterisierung einer NVOC und zweier NDBF Schutzgruppen beschrieben. Es konnten anhand statischer Absorptionsmessungen eine Freisetzungsquantenausbeute für NVOC-Adenin von 1,1 % ermittelt werden. Die Charakterisierung der Schutzgruppen mit einer NDBF Grundstruktur (DMA-NDBF und Az-NDBF) ergab eine Abhängigkeit der Freisetzungs- und Fluoreszenzausbeute von der Polarität des Lösungsmittels. In polarer Umgebung reduzierten sich die Quantenausbeuten deutlich...
The most versatile tool for visualizing endogenous RNA is molecular beacons (MBs). MBs are modified oligonucleotides that consist of a stem-loop structure equipped with a fluorophore and a quencher at the opposite ends. They only give a fluorescent signal when hybridized to the target RNA. Here we present our recent efforts to enhance the spatiotemporal resolution of RNA visualization by refining MBs.
We first asked if we could refine MBs to visualize defined subcellular populations of RNA in living neurons. To achieve this, we utilize visible light-activatable Q-dye MBs to allow only a subcellular fraction to be activated. Here, the fluorophore at the 5’-end was linked to a second quencher via a photolabile coumarin protecting group. Therefore, the MB only gives a fluorescent signal, when activated with visible light and hybridized to the target. This architecture allowed local activation of a hybridized subpopulation in a defined area of the cell. Knowing the exact origin of the activated RNA, we were able to increase the available monitoring time for neuronal mRNA from several minutes (literature known MBs) to more than 14 hours.
We next asked if it would be possible to gain spatiotemporal control over where the MB hybridization events occur. Therefore, we developed photo-tethered MBs where two phosphates in the loop backbone are covalently linked to each other via two photocages. This prevents the MB from hybridization to the target RNA. Only when light is applied, the photo-tethers are cleaved, and the inherent hybridization function of the MB is activated. This architecture allowed us to control the hybridization of photo-tethered MBs in primary cultured neurons.
To this day, stroke is the leading cause of death and disability worldwide. Due to increasing age of the world population and poor lifestyle, the incidence is further rising. Besides mechanical thrombectomy as a surgical option, there is a lack of therapeutic options with recombinant tissue plasminogen activator (rt-PA) being the only approved drug for treatment for ischemic stroke. However, there are various problems that make the administration of rt-PA difficult. In particular, it can only be given for ischemic (not hemorrhagic) stroke, and there is a narrow time frame of 4.5 hours after onset of stroke, in which it can be successfully applied. While the success rates of combined thrombectomy with rt-PA are around 60%, less than 5% of patients receive this therapy.
ß-Hydroxybutyrate (BHB) is a ketone body that is formed in high amounts during fasting and lipolysis. Ketone bodes and the ketogenic diet have been shown to have neuroprotective properties in neurodegenerative diseases. In prior work of our group, the ketogenic diet was shown to have beneficial effects in mice after transient ischemia. In the present work, a single dose of BHB was tested for beneficial effects. For this purpose, microdialysis was used to demonstrate that BHB can cross the blood-brain barrier. For the next series of experiments, transient cerebral ischemia was induced in mice for 90 minutes by unilaterally occluding the middle cerebral artery (MCAO) with a silicone-covered filament. Behavioral tests one day after BHB administration showed that the moderate dose of 30 mg/kg, given immediately after reperfusion, improved the neurological score significantly whereas a lower (10 mg/kg) and a higher dose (100 mg/kg) had no effects The main part of the experiments focused on mitochondrial respiration as a potential mechanism of action for BHB. In isolated mitochondria from mouse brain, BHB (1-10 mM) was able to stimulate mitochondrial respiration stronger than pyruvate, but not as strong as succinate.. In the following experiments, MCAO was induced in vivo, and mitochondria were isolated and investigated ex vivo. Experiments were conducted 60 minutes, 24 hours, 72 hours, and 7 days after cerebral ischemia and reperfusion. Besides mitochondrial respiration (normalized to mitochondrial protein content or citrate synthase activity), several other parameters were monitored: the development of bodyweight throughout the experiment, citrate synthase activity, plasma metabolites and behavior to assess motor functions. Three behavioral tests were conducted: first, the Corner test, an experiment for measuring the extent of unilateral movement. Here, if a stroked mouse is put into a narrow corner (30°), it is most likely to turn unilaterally to the right, whereas an unimpaired mouse will turn to both sides randomly. From a total of 10 turns, a laterality index was calculated. Second, in the Chimney test, the mouse walks heads first into a tube. Once it reaches the end, the tube is tipped 90 degrees to stand on the table vertically. Motorically impaired animals have difficulties crawling backwards up to the top of the tube. The experiment was stopped if an animal did not reach the top of the tube within 60 seconds. Third, in the Rotarod test, the mouse is placed on a rotating beam on which it is supposed to walk for at least 60 seconds, and the time when the animal falls off the rotating tube is measured.
All animals that had undergone ischemia showed massive weight loss until 72 hours after reperfusion. Weight loss then stagnated and there was a trend of increasing weight 7 days after reperfusion. The behavioral analysis showed that 24 hours after reperfusion, BHB-treated animals performed significantly better in the Corner test, meaning their moving patterns were more heterogeneous than those of saline-treated animals and in the Chimney test. 72 hours after reperfusion, BHB-treated animals still performed significantly better in the Chimney test, but 7 days after reperfusion, the performances of BHB- and saline-treated animals were no longer different from each other in any of the behavioral tests. In separate experiments, the plasma metabolites glucose, lactate, and pyruvate were changed in the animals that had undergone ischemia but were not affected by BHB administration.
Mitochondrial respiration was tested at four time points after the administration of BHB after reperfusion – 60 minutes, 24 hours, 72 hours, and 7 days after transient cerebral ischemia. 60 minutes later, data showed an increase of oxygen consumption of the complexes I and II. OxPhos was also increased but the effect at this point, did not reach statistical significance. 24 hours after reperfusion, this effect was consolidated: complex I, complex II and OxPhos respiration were significantly improved in the BHB-treated group compared to saline...
Intrinsische und extrinsische Faktoren wie die Darreichungsform, Komedikation und genetische Polymorphismen können einen signifikanten Einfluss auf die Exposition des Wirkstoffes haben und in der Folge zu Veränderungen in der Wirksamkeit oder Sicherheit eines Wirkstoffes führen. Die Fähigkeit die Auswirkungen solcher Faktoren auf die Exposition und die pharmakologische Aktivität eines Wirkstoffes zu quantifizieren und zu extrapolieren, repräsentiert einen Meilenstein bei der Bestimmung der erforderlichen Dosisanpassungen und der Umsetzung von Risikomanagementstrategien in der klinischen Pharmakologie. Unter dem Blickwinkel der modellbasierten Arzneimittelforschung und -entwicklung (engl. model-informed drug discovery and development (MID3)) können dynamisch mechanistische Modelle, wie z. B. whole-body PBPK/PD-Modelle, für die Vorhersage des Effekts sowie der Wechselwirkung mehrerer Faktoren auf PK und PD nützlich sein und könnten daher als Orientierung für die Wahl der Formulierung und für klinische Dosierungsempfehlungen dienen.
Obwohl PBPK-Modelle in der Pharmabranche inzwischen routinemäßig zur internen Entscheidungsfindung und zur Unterstützung der regulatorischen Bewertung eingesetzt werden, bleibt das Vertrauen Waiver von speziellen klinischen pharmakologischen Studien für biopharmazeutische Anwendungen durch PBPK- Modellanalysen zu stützen eher gering. Andererseits hat sich die virtuelle Bioäquivalenz im Zusammenhang mit der Simulation klinischer Studien als ein vielversprechendes, aber noch unterentwickeltes Feld erwiesen, mit dessen Hilfe der Anwendungsbereich der PBPK-Modellierung in der Biopharmazeutik erweitert werden kann. So werden beispielsweise BCS-basierte Biowaiver für Wirkstoffe der BCS-Klassen II und IV derzeit von den Gesundheitsbehörden nicht akzeptiert. In einigen Fällen hat die PBPK-Modellierung durch Verknüpfung der In-vitro-Freisetzung mit der In-vivo-Performance der Formulierung jedoch gezeigt, dass ein solcher Ansatz unter Umständen wissenschaftlich gerechtfertigt sein könnte. Auf ähnliche Weise können PBPK-Modellierung und VBE verwendet werden, um klinisch relevante Spezifikationen für die Wirkstofffreisetzung festzulegen und den "safe space" der Freisetzung zu definieren (oder zu erweitern). Doch selbst bei Wirkstoffen, die Unterschiede im Umfang und in der Rate der Absorption außerhalb der Bioäquivalenzgrenzen aufweisen, was bedeutet, dass sie nicht als bioäquivalent und damit austauschbar angesehen werden können, kann die therapeutische Äquivalenz beibehalten werden, sofern dies durch eine Expositions-Wirkungs-Analyse und/oder eine Expositions-Sicherheits-Analyse unter Verwendung empirischer, halb- oder vollmechanistischer PK/PD-Modelle angemessen begründet wird.
Wie bereits erwähnt bieten PK/PD- und insbesondere PBPK/PD-Modelle einen mechanistischen Ansatz, der die Gewebekonzentrationen am Wirkort des Wirkstoffes mit der pharmakologischen Wirkung verknüpft. Im Rahmen dieser Arbeit wird zunächst ein Überblick über bestehende PK/PD-Modelle und deren mathematischen Umsetzung vorgestellt. Darüber hinaus sind wirkstoffspezifische Fallbeispiele mit einer offensichtlichen Entkopplung von PK und PD von besonderem Interesse, bei denen Expositionsschwankungen weniger kritisch, wenn nicht gar irrelevant für die pharmakologische Reaktion sind (Publikation 1).
In diesem Zusammenhang bietet PBPK Modellierung und Simulation die Möglichkeit die oben genannten wissenschaftlichen Überlegungen zu untersuchen, ungetestete Szenarios zu erforschen und schließlich evidenzbasiert und arzneimittelspezifische Empfehlungen für Bioäquivalenzprüfungen zu erteilen. Daher bestand das Hauptziel darin PBPK/PD-Modelle zu entwicklen, zu validieren und anzuwenden sowie virtuelle Trials zu simulieren, um den relativen Effekt der In-vitro/ In-vivo-Freisetzung, PK-Charakteristiken (z.b. die Halbwertszeit) und die intraindividuelle Variabilität bei der In-vivo-Arnzeimittelwirkung von BCS Klasse II schwach sauren Verbindungen zu beurteilen und einen PBPK-IVIVE integrierten Arbeitsablauf vorzuschlagen, um virtuelle Bioäquivalenzstudien durchzuführen.
Es wurden drei BCS Klasse II schwach saure Wirkstoffe (Naproxen, Flurbiprofen, Ibuprofen) mit ähnlicher Disposition und ähnlichen metabolischen Eigenschaften zur Untersuchung ausgewählt. Allgemein sind alle drei Wirkstoffe stark an Plasmaproteine gebunden und haben daher ein niedriges Verteilungsvolumen, niedrigen First-Pass-Effekt, niedrige systemische Clearance und eine nahezu vollständige Bioverfügbarkeit (F>0.9). Allerdings unterscheiden sie sich signifikant in ihrer Halbwertszeit: Für Naproxen beträgt t1/2≃20-24 h, für Flurbiprofen t1/2≃7 h und für Ibuprofen t1/2≃2 h, was moderate bis lange, moderate und kurze Halbwertszeiten widerspiegelt.
Für alle drei Wirkstoffe wurde ein systematischer Arbeitsablauf erstellt einschließlich: i) Charakterisierung von in vitro biopharmazeutischen Eigenschaften (z.b. Löslichkeit, Freisetzung) gefolgt von modellbasierten Analysen von In-vitro-Ergebnissen, ii) Entwicklung und umfassende Validierung von PBPK/PD-Modellen und iii) Simulierung und Risikoeinschätzung von Bioäquivalenzstudien. Die Fallstudien von Naproxen (Publikation 2) und Ibuprofen (Publikation 3) konzentrieren sich auf bewährte Verfahren der IVIVE für biopharmazeutische Parameter, Risikoabschätzung und Simulation von Bioäquivalenzstudien mit PBPK-Modellen, welche die inter-occasion Variabilität miteinbeziehen. Das Beispiel von Flurbiprofen (Publikation 4) hebt die Wichtigkeit des Verständnisses des relativen Einflusses von intrinsischen (z.b. genetische Polymorphismen) und extrinsischen (z.b. Komedikationen) Faktoren auf die PK und PD des Wirkstoffes hervor, wenn Empfehlungen für die Bioäquivalenz und die therapeutische Gleichwertigkeit gemacht werden. Alle drei Fallbeispiele liefern mechanistische Erkenntnisse über die Freisetzungssgrenzen, die für die In-vivo-Arneimittelwirksamkeit kritisch ist, unter Berücksichtigung der PK-Eigenschaften des Wirkstoffes und der physiologischen Variabilität mit dem Ziel den Status quo des aktuellen BCS-basierten Biowaiveransatzes in Frage zu stellen und integrierte In-vitro-, In-vivo- und In-silico-Paradigma der Risikobewertung für Waiver von In-vivo-Bioäquivalenzstudien einzuführen.
In dem letzten Teil der Arbeit werden Herausforderungen, Kenntnislücken und Möglichkeiten von PBPK/PD-Modellierung zur Unterstützung von Waivern von in vivo klinischen Studien im Bereich von oralen Biopharmazeutika diskutiert (Publikation 5).
Im Großen und Ganzen schlägt diese Dissertation biorelevante In-vitro-Methoden für die Vorhersage von In-vivo-Formulierungsperformance und neue PBPK/PD-Methoden vor, um Daten von in vitro biopharmazeutischen Experimenten zu den In-vivo-Bedingungen zu extrapolieren. Außerdem ist dies das erste Mal nach unserem Kenntnisstand, dass PBPK/PD-Ansätze zur Durchführung virtueller Bioäquivalenzstudien vorgeschlagen werden, die auch die inter-occasion Variabilität der Pharmakokinetik berücksichtigen. Desweiteren hebt diese Arbeit die Bedeutung von pharmakokinetischen Eigenschaften auf Bioäquivalenz-Ergebnissen hervor und stellt ein neues Konzept zur Risikoeinschätzung von Bioäquivalenz vor, in welchem die Bewertung des Bedarfs eines Waivers von einer In-vivo-Bioäquivalenzstudie sowohl auf biopharmazeutischen als auch pharmakokinetischen Wirkstoffeigenschaften basiert und quantitativ mit PBPK/PD-Modellierung bewertet wird.