Refine
Year of publication
Document Type
- Preprint (32)
- Article (7)
- Conference Proceeding (1)
- Report (1)
Language
- English (41)
Has Fulltext
- yes (41)
Is part of the Bibliography
- no (41)
Keywords
- Kollisionen schwerer Ionen (11)
- Quark-Gluon-Plasma (6)
- heavy ion collisions (5)
- heavy-ion collisions (5)
- QGP (4)
- SPS (4)
- quark-gluon plasma (4)
- equation of state (3)
- hydrodynamisches Modell (3)
- quark-gluon-plasma (3)
Institute
We discuss that hadron-induced atmospheric air showers from ultra-high energy cosmic rays are sensitive to QCD interactions at very small momentum fractions x where nonlinear effects should become important. The leading partons from the projectile acquire large random transverse momenta as they pass through the strong field of the target nucleus, which breaks up their coherence. This leads to a steeper x_F-distribution of leading hadrons as compared to low energy collisions, which in turn reduces the position of the shower maximum Xmax. We argue that high-energy hadronic interaction models should account for this effect, caused by the approach to the black-body limit, which may shift fits of the composition of the cosmic ray spectrum near the GZK cutoff towards lighter elements. We further show that present data on Xmax(E) exclude that the rapid ~ 1/x^0.3 growth of the saturation boundary (which is compatible with RHIC and HERA data) persists up to GZK cutoff energies. Measurements of pA collisions at LHC could further test the small-x regime and advance our understanding of high density QCD significantly.
We calculate prompt photon production in high-energy nuclear collisions. We focus on the broadening of the intrinsic transverse momenta of the partons in the initial state from nuclear e ects, and their influence on the prompt photon pt distribution. Comparing to WA98 data from Pb+Pb collisions at s = 17.4A GeV we find evidence for the presence of nuclear broadening at high pt in this hard process. Below pt < 2.7 GeV the photon distribution is due to small momentum transfer processes. At RHIC energy, s = 200A GeV, the e ect of intrinsic transverse momentum on the spectrum of prompt photons is less prominent. The region pt = 3 4 GeV would be the most promising for studying the nuclear broadening effects at that energy. Below pt = 2 3 GeV the contribution from large momentum transfers flattens out, and we expect that region to be dominated by soft contributions.
We calculate prompt photon production in high-energy nuclear collisions. We focus on the broadening of the intrinsic transverse momenta of the partons in the initial state from nuclear effects, and their influence on the prompt photon pt distribution. Comparing to WA98 data from Pb+Pb collisions at s = 17.4A GeV we find evidence for the presence of nuclear broadening at high pt in this hard process. Below pt < 2.7 GeV the photon distribution is due to small momentum transfer processes. At RHIC energy, s = 200A GeV, the e ect of intrinsic transverse momentum on the spectrum of prompt photons is less prominent. The region pt = 3 4 GeV would be the most promising for studying the nuclear broadening e ects at that energy. Below pt = 2 3 GeV the contribution from large momentum transfers flattens out, and we expect that region to be dominated by soft contributions.
We determine the hard-loop resummed propagator in an anisotropic QCD plasma in general covariant gauges and define a potential between heavy quarks from the Fourier transform of its static limit. We find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment.
We study the production of transversely polarized Λ hyperons in high-energy collisions of protons with large nuclei. The large gluon density of the target at saturation provides an intrinsic semi-hard scale which should naturally allow for a weak-coupling QCD description of the process in terms of a convolution of the quark distribution of the proton with the elementary quark–nucleus scattering cross section (resummed to all twists) and a fragmentation function. In this case of transversely polarized Λ production we employ a so-called polarizing fragmentation function, which is an odd function of the transverse momentum of the Λ relative to the fragmenting quark. Due to this kt-odd nature, the resulting Λ polarization is essentially proportional to the derivative of the quark–nucleus cross section with respect to transverse momentum, which peaks near the saturation momentum scale. Such processes might therefore provide generic signatures for high parton density effects and for the approach to the “black-body” (unitarity) limit of hadronic scattering.
We solve the coupled Wong Yang–Mills equations for both U(1) and SU(2) gauge groups and anisotropic particle momentum distributions numerically on a lattice. For weak fields with initial energy density much smaller than that of the particles we confirm the existence of plasma instabilities and of exponential growth of the fields which has been discussed previously. Also, the SU(2) case is qualitatively similar to U(1), and we do find significant “abelianization” of the non-Abelian fields during the period of exponential growth. However, the effect nearly disappears when the fields are strong. This is because of the very rapid isotropization of the particle momenta by deflection in a strong field on time scales comparable to that for the development of Yang–Mills instabilities. This mechanism for isotropization may lead to smaller entropy increase than collisions and multiplication of hard gluons, which is interesting for the phenomenology of high-energy heavy-ion collisions.
We introduce a model for the real-time evolution of a relativistic fluid of quarks coupled to non-equilibrium dynamics of the long wavelength (classical) modes of the chiral condensate. We solve the equations of motion numerically in 3+1 spacetime dimensions. Starting the evolution at high temperature in the symmetric phase, we study dynamical trajectories that either cross the line of first-order phase transitions or evolve through its critical endpoint. For those cases, we predict the behavior of the azimuthal momentum asymmetry for highenergy heavy-ion collisions at nonzero impact parameter.
To describe ultrarelativistic heavy-ion collisions we construct a three-fluid hydrodynamical model. In contrast to one-fluid hydrodynamics, it accounts for the finite stopping power of nuclear matter, i.e. for nonequilibrium e ects in the early stage of the reaction. Within this model, we study baryon dynamics in the BNL-AGS energy range. For the system Au+Au we find that kinetic equilibrium between projectile and target nucleons is established only after a time teq CM H 5 fm/c C 2RAu/³CM. Observables which are sensitive to the early stage of the collision (like e.g. nucleon flow) therefore di er considerably from those calculated in the one-fluid model.
We discuss the early evolution of ultrarelativistic heavy-ion collisions within a multi- fluid dynamical model. In particular, we show that due to the finite mean-free path of the particles compression shock waves are smeared out considerably as compared to the one-fluid limit. Also, the maximal energy density of the baryons is much lower. We discuss the time scale of kinetic equilibration of the baryons in the central region and its relevance for directed flow. Finally, thermal emission of direct photons from the fluid of produced particles is calculated within the three-fluid model and two other simple expansion models. It is shown that the transverse momentum and rapidity spectra of photons give clue to the cooling law and the early rapidity distribution of the photon source.
Abstract: We study transverse expansion and directed flow in Au(11AGeV)Au reactions within a multi-fluid dynamical model. Although we do not employ an equation of state (EoS) with a first order phase transition, we find a slow increase of the transverse velocities of the nucleons with time. A similar behaviour can be observed for the directed nucleon flow. This is due to non-equilibrium e ects which also lead to less and slower conversion of longitudinal into transverse momentum. We also show that the proton rapidity distribution at CERN energies, as calculated within this model, agrees well with the preliminary NA44-data.