Refine
Year of publication
Document Type
- Article (12)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Cyanobacteria (3)
- Diagnostik (2)
- Früherkennung (2)
- Mammakarzinom (2)
- Nachsorge (2)
- Richtlinie (2)
- TolC (2)
- breast cancer (2)
- diagnosis (2)
- follow‑up (2)
Institute
- Medizin (8)
- Biowissenschaften (4)
- Biochemie und Chemie (3)
- MPI für Biophysik (2)
- Biodiversität und Klima Forschungszentrum (BiK-F) (1)
- Exzellenzcluster Makromolekulare Komplexe (1)
- Institut für Ökologie, Evolution und Diversität (1)
- Physik (1)
- Senckenbergische Naturforschende Gesellschaft (1)
- Zentrum für Interdisziplinäre Afrikaforschung (ZIAF) (1)
One limitation of mechanical thrombectomy (MT) is clot migration during procedure. This might be caused by abruption of the trapped thrombus at the distal access catheter (DAC) tip during stent-retriever retraction due to the cylindrical shaped tip of the DAC. Aiming to solve this problem, this study evaluates the proof-of-concept of a new designed funnel-shaped tip, in an experimental in vitro setting. Two catheter models, one with a funnel-shaped tip and one with a cylindrical-shaped tip, were compared in an experimental setup. For MT a self-made vessel model and thrombi generated from pig’s blood were used. MT was performed 20 times for each device using two different stent-retrievers, 10 times respectively. For the funnel-shaped model: for both stent-retrievers (Trevo XP ProVue 3/20 mm; Trevo XP ProVue 4/20 mm) MT was successful at first pass in 9/10 (90%), respectively. For the cylindrical-shaped model: MT was successful at first pass in 5/10 (50%) with the smaller stent-retriever and in 6/10 (60%) with the larger stent-retriever. The experiments show a better recanalization rate for funnel-shaped tips, than for cylindrical-shaped tips. These results are indicating a good feasibility for this new approach, thus the development of a prototype catheter seems reasonable.
Background: The West African country of Burkina Faso (BFA) is an example for the enduring importance of traditional plant use today. A large proportion of its 17 million inhabitants lives in rural communities and strongly depends on local plant products for their livelihood. However, literature on traditional plant use is still scarce and a comprehensive analysis for the country is still missing.
Methods: In this study we combine the information of a recently published plant checklist with information from ethnobotanical literature for a comprehensive, national scale analysis of plant use in Burkina Faso. We quantify the application of plant species in 10 different use categories, evaluate plant use on a plant family level and use the relative importance index to rank all species in the country according to their usefulness. We focus on traditional medicine and quantify the use of plants as remedy against 22 classes of health disorders, evaluate plant use in traditional medicine on the level of plant families and rank all species used in traditional medicine according to their respective usefulness.
Results: A total of 1033 species (50%) in Burkina Faso had a documented use. Traditional medicine, human nutrition and animal fodder were the most important use categories. The 12 most common plant families in BFA differed considerably in their usefulness and application. Fabaceae, Poaceae and Malvaceae were the plant families with the most used species. In this study Khaya senegalensis, Adansonia digitata and Diospyros mespiliformis were ranked the top useful plants in BFA. Infections/Infestations, digestive system disorders and genitourinary disorders are the health problems most commonly addressed with medicinal plants. Fabaceae, Poaceae, Asteraceae, Apocynaceae, Malvaceae and Rubiaceae were the most important plant families in traditional medicine. Tamarindus indica, Vitellaria paradoxa and Adansonia digitata were ranked the most important medicinal plants.
Conclusions: The national-scale analysis revealed systematic patterns of traditional plant use throughout BFA. These results are of interest for applied research, as a detailed knowledge of traditional plant use can a) help to communicate conservation needs and b) facilitate future research on drug screening.
Elevated tumor interstitial fluid pressure (TIFP) is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency. In our experimental setup, we observed for the impedance fluctuations in the outer tumor hull of A431-vulva carcinoma–derived tumor xenograft mice. The gain dependence of signal strength was quantified, and the relaxation of tissue was calibrated with simultaneous hydrostatic pressure measurements. Signal patterns from the acoustical images were translated into TIFP curves, and a putative saturation effect was found for tumor pressures larger than 3 mm Hg. This is the first noninvasive approach to determine TIFP values in tumors. This technique can provide a potentially promising noninvasive assessment of TIFP and, therefore, can be used to determine the TIFP before treatment approach as well to measure therapeutic efficacy highlighted by lowered TFP values.
Ziel: Die Evaluation der DEGUM-Mammasonografiekurse nach objektivierbaren Kriterien war Ziel dieser Arbeit. Damit sollte die Qualität der Kurse überprüft werden, um eine flächendeckende Fort- und Weiterbildung auf hohem Niveau anzubieten.
Material und Methoden: 10 Qualitätskriterien, orientierend an den Vorgaben der KBV-Ultraschallvereinbarungen wurden als Qualitätsparameter definiert. Alle Kursleiter des Arbeitskreises Mammasonografie der DEGUM wurden angeschrieben. Dabei wurden die 10 definierten Qualitätskriterien überprüft.
Ergebnisse: Alle Kurse erfüllten die Voraussetzungen bezüglich der Qualität des Kursleiters, der Kursdauer und Unterrichtseinheiten sowie der Anzahl an Kursteilnehmern pro Ultraschallgerät. In 1 von 9 Kursen wurde die Zeit der praktischen Übungen, gefordert sind 50 %, unterschritten. Die Voraussetzungen für den Abschlusskurs (200 selbst durchgeführte und dokumentierte Fälle) sind in den Kursankündigungen zum Teil nicht klar definiert. Ein strukturierter Lehrkatalog fehlt.
Schlussfolgerung: Die DEGUM-Mammasonografiekurse werden auf hohem Niveau angeboten und erfüllen zum größten Teil die Anforderungen der KBV. Trotz der hohen Qualität der DEGUM-Kurse sind Optimierungsoptionen im Bereich Kursankündigung und strukturierter Lehrkatalog möglich.
The TolC protein of E. coli is a versatile OMF which is involved in secretion of antibiotics, heavy metal ions, secondary metabolites and proteins. These individual tasks are accomplished by a dynamic formation of different secretion complexes which comprising a plasma membrane transporter, a Membrane Fusion Protein and TolC as the outer membrane channel-tunnel. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 was previously described as an indispensable OMF involved in formation of the heterocyst-specific glycolipid layer which is needed to sustain the microoxic environment that allows nitrogen fixation in heterocysts of filamentous cyanobacteria. Here I show that HgdD is involved in macrolide antibiotic resistance and ethidium efflux, which is used as a model substrate for cytotoxic compounds and secondary metabolites. It can be shown that ethidium uptake is a passive and porin-dependent process, while multidrug efflux is performed together with the RND efflux pump All3143 (and the MFP All3144). In contrast to HgdD, All3143 can complement the function of its homologue AcrB in E. coli and was suggested to be named anaAcrB. Multidrug efflux is assisted by SmsA and SchE, two secondary transporters of the MFS-type, which facilitate the transport of cytoplasmatic ethidium to the periplasmic space prior to the All3143- and HgdD-dependent efflux. Moreover, it can be demonstrated that SchE and HgdD are involved in secretion of the metal ion-chelating siderophore schizokinin, which functions in iron(III) acquisition. However, a physical interaction of SchE and HgdD is unlikely since SchE does not possess an OMF interacting domain. In addition, both RND efflux pumps All3143 and Alr1656 are needed for the homeostasis of the photosystems during diazotrophic growth. Although a direct involvement in heterocyst development or metabolism cannot be discounted at this stage, it is speculated that both RND transporters are involved in detoxification of reactive nitrogen species, similar to the function of MexF and MdtF of P. aeruginosa and E. coli respectively. In addition to its function in multidrug efflux, HgdD has been shown to be involved in protein secretion. By comparative analysis of the Anabaena sp. wild type and hgdD mutant secretome it was possible to identify eight putative HgdD protein substrates. The localization of four proteins was exemplary demonstrated by secretome isolation and cell fractionation of hemagglutinin-tagged mutant strains. The absence of detectable protein in the hgdD mutant strain suggests a highly efficient secretion system which is quality controlled by proteolysis of mislocalized proteins.
Mitochondrial ATP synthases form dimers, which assemble into long ribbons at the rims of the inner membrane cristae. We reconstituted detergent-purified mitochondrial ATP synthase dimers from the green algae Polytomella sp. and the yeast Yarrowia lipolytica into liposomes and examined them by electron cryotomography. Tomographic volumes revealed that ATP synthase dimers from both species self-assemble into rows and bend the lipid bilayer locally. The dimer rows and the induced degree of membrane curvature closely resemble those in the inner membrane cristae. Monomers of mitochondrial ATP synthase reconstituted into liposomes do not bend membrane visibly and do not form rows. No specific lipids or proteins other than ATP synthase dimers are required for row formation and membrane remodelling. Long rows of ATP synthase dimers are a conserved feature of mitochondrial inner membranes. They are required for cristae formation and a main factor in mitochondrial morphogenesis.
Mitochondria and chloroplasts are of endosymbiotic origin. Their integration into cells entailed the development of protein translocons, partially by recycling bacterial proteins. We demonstrate the evolutionary conservation of the translocon component Tic22 between cyanobacteria and chloroplasts. Tic22 in Anabaena sp. PCC 7120 is essential. The protein is localized in the thylakoids and in the periplasm and can be functionally replaced by a plant orthologue. Tic22 physically interacts with the outer envelope biogenesis factor Omp85 in vitro and in vivo, the latter exemplified by immunoprecipitation after chemical cross-linking. The physical interaction together with the phenotype of a tic22 mutant comparable with the one of the omp85 mutant indicates a concerted function of both proteins. The three-dimensional structure allows the definition of conserved hydrophobic pockets comparable with those of ClpS or BamB. The results presented suggest a function of Tic22 in outer membrane biogenesis.
Background: Although Tic22 is involved in protein import into chloroplasts, the function in cyanobacteria is unknown.
Results: Cyanobacterial Tic22 is required for OM biogenesis, shares structural features with chaperones, and can be substituted by plant Tic22.
Conclusion: Tic22, involved in outer membrane biogenesis, is functionally conserved in cyanobacteria and plants.
Significance: The findings are important for the understanding of periplasmic protein transport.
The role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, termed heterocyst glycolipid deposition protein D (HgdD), is involved in both protein and lipid secretion. To describe its function in secondary metabolite secretion, we established a system to measure the uptake of antibiotics based on the fluorescent molecule ethidium bromide. We analyzed the rate of porin-dependent metabolite uptake and confirmed the functional relation between detoxification and the action of HgdD. Moreover, we identified two major facilitator superfamily proteins that are involved in this process. It appears that anaOmp85 (Alr2269) is not required for insertion or assembly of HgdD, because an alr2269 mutant does not exhibit a phenotype similar to the hgdD mutant. Thus, we could assign components of the metabolite efflux system and describe parameters of detoxification by Anabaena sp. PCC 7120.
The TolC-like protein HgdD of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 is part of multiple three-component "AB-D" systems spanning the inner and outer membranes and is involved in secretion of various compounds, including lipids, metabolites, antibiotics, and proteins. Several components of HgdD-dependent tripartite transport systems have been identified, but the diversity of inner membrane energizing systems is still unknown. Here we identified six putative resistance-nodulation-cell division (RND) type factors. Four of them are expressed during late exponential and stationary growth phase under normal growth conditions, whereas the other two are induced upon incubation with erythromycin or ethidium bromide. The constitutively expressed RND component Alr4267 has an atypical predicted topology, and a mutant strain (I-alr4267) shows a reduction in the content of monogalactosyldiacylglycerol as well as an altered filament shape. An insertion mutant of the ethidium bromide-induced all7631 did not show any significant phenotypic alteration under the conditions tested. Mutants of the constitutively expressed all3143 and alr1656 exhibited a Fox(-) phenotype. The phenotype of the insertion mutant I-all3143 parallels that of the I-hgdD mutant with respect to antibiotic sensitivity, lipid profile, and ethidium efflux. In addition, expression of the RND genes all3143 and all3144 partially complements the capability of Escherichia coli ΔacrAB to transport ethidium. We postulate that the RND transporter All3143 and the predicted membrane fusion protein All3144, as homologs of E. coli AcrB and AcrA, respectively, are major players for antibiotic resistance in Anabaena sp. PCC 7120.