Refine
Document Type
- Preprint (15)
- Article (3)
- Conference Proceeding (2)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- Kollisionen schwerer Ionen (4)
- heavy ion collisions (3)
- UrQMD Modell (2)
- Bremsstrahlung (1)
- Dielectron (1)
- Dielektron (1)
- Equation of state (1)
- Ereignisschwankungen (1)
- Event-by-event fluctuations (1)
- Heavy ion collisions (1)
Institute
- Physik (20)
Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.
Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model
(1999)
Hadron-hadron collisions at high energies are investigated in the Ultra- relativistic-Quantum-Molecular-Dynamics approach. This microscopic trans- port model describes the phenomenology of hadronic interactions at low and intermediate energies ( s < 5 GeV) in terms of interactions between known hadrons and their resonances. At higher energies, s > 5 GeV, the excitation of color strings and their subsequent fragmentation into hadrons dominates the multiple production of particles in the UrQMD model. The model shows a fair overall agreement with a large body of experimental h-h data over a wide range of h-h center-of-mass energies. Hadronic reaction data with higher precision would be useful to support the use of the UrQMD model for relativistic heavy ion collisions.
Local equilibrium in heavy ion collisions. Microscopic model versus statistical model analysis
(1999)
The assumption of local equilibrium in relativistic heavy ion collisions at energies from 10.7 AGeV (AGS) up to 160 AGeV (SPS) is checked in the microscopic transport model. Dynamical calculations performed for a central cell in the reaction are compared to the predictions of the thermal statistical model. We find that kinetic, thermal and chemical equilibration of the expanding hadronic matter are nearly approached late in central collisions at AGS energy for t >= 10 fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing energy, 40 AGeV and 160 AGeV. These violations of local equilibrium indicate that a fully equilibrated state is not reached, not even in the central cell of heavy ion collisions at energies above 10 AGeV. The origin of these findings is traced to the multiparticle decays of strings and many-body decays of resonances.
Abstract: Local thermal and chemical equilibration is studied for central AqA collisions at 10.7 160 AGeV in the Ultrarelativis- . tic Quantum Molecular Dynamics model UrQMD . The UrQMD model exhibits strong deviations from local equilibrium at the high density hadron string phase formed during the early stage of the collision. Equilibration of the hadron resonance matter is established in the central cell of volume Vs125 fm3 at later stages, tG10 fmrc, of the resulting quasi-isentropic expansion. The thermodynamical functions in the cell and their time evolution are presented. Deviations of the UrQMD quasi-equilibrium state from the statistical mechanics equilibrium are found. They increase with energy per baryon and lead to a strong enhancement of the pion number density as compared to statistical mechanics estimates at SPS energies. PACS: 25.75.-q; 24.10.Lx; 24.10.Pa; 64.30.qt
Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.
The yields of strange particles are calculated with the UrQMD model for p,Pb(158 AGeV)Pb collisions and compared to experimental data. The yields are enhanced in central collisions if compared to proton induced or peripheral Pb+Pb collisions. The enhancement is due to secondary interactions. Nevertheless, only a reduction of the quark masses or equivalently an increase of the string tension provides an adequate description of the large observed enhancement factors (WA97 and NA49). Furthermore, the yields of unstable strange resonances as the Lambda star(1520) resonance or the phi meson are considerably affected by hadronic rescattering of the decay products.
The hypothesis of local equilibrium (LE) in relativistic heavy ion collisions at energies from AGS to RHIC is checked in the microscopic transport model. We find that kinetic, thermal, and chemical equilibration of the expanding hadronic matter is nearly reached in central collisions at AGS energy for t >_ fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing bombarding energies. The origin of these deviations is traced to the irreversible multiparticle decays of strings and many-body (N >_ 3) decays of resonances. The violations of LE indicate that the matter in the cell reaches a steady state instead of idealized equilibrium. The entropy density in the cell is only about 6% smaller than that of the equilibrium state.
Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.
Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient "equilibrium" state remains ambiguous.
We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E >= 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm 3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm 3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.