Refine
Year of publication
Document Type
- Preprint (17)
- Article (3)
- Doctoral Thesis (1)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Dirac (2)
- Kerne (2)
- QCD (2)
- Quanten-Chromodynamik (2)
- Quark Gluon Plasma (2)
- baryon (2)
- heavy ion collisions (2)
- heavy-ion collisions (2)
- nuclear matter (2)
- nuclei (2)
Institute
Gegenstand dieser Arbeit sind Eigenschaften angeregter hadronischer Materie sowie physikalische Systeme, in denen diese Materie auftritt bzw. produziert wird. Die Beschreibung der stark wechselwirkenden Materie erfolgt in einem hadronischen, chiral-symmetrischen SU(3)L x SU(3)R Modell, welches die Saturierungseigenschaften von Kernmaterie und die Eigenschaften von Atomkernen reproduziert. Die Untersuchung heißer und dichter unendlicher hadronischor Materie zeigt, dass das vom Modell vorhergesagte Phasendiagramm stark von den Kopplungen der Baryonenresonanzen abhängt. Für kalte hadronische Materie ergibt die Einbeziehung des Baryonendekupletts und die Freiheit in deren Vektorkopplungen eine sehr große Bandbreite an verschiedenen Zustandsgleichungen. Für heiße hadronische Materie mit verschwindendem baryochemischen Potential zeigt sich ebenfalls eine starke Abhängigkeit der Eigenschaften hadronischer Materie von der Ankopplung der baryonischen Resonanzen. Es werden drei verschiedene Parametrisierungen betrachtet. Das resultierende Phasenübergangsverhalten variiert von einem "Crossover" über einen schwachen, zu einem doppelten Phasenübergang erster Ordnung. Es zeigt sich jedoch, dass die beobachteten Eigenschaften von Neutronensternen die Unbestimmtheit bzgl. der Vektorkopplung dieser Freiheitsgrade und damit der Zustandsgleichung deutlich verringern. Das Raum-Zeit Verhalten relativistischer Schwerionenkollisionen bei SPS- und RHIC-Energien wird mittels einer hydrodynamischen Simulation unter Benutzung der chiralen Zustandsgleichungen untersucht. Dabei spiegelt sich das unterschiedliche Phasenübergangsverhalten deutlich im Ausfrierverhalten der hadronischen Materie wider. Die im chiralen Modell berechneten Teilchenzahlverhältnisse werden mit den aus Schwerionenkollisionen von AGS- bis RHIC-Energien erhaltenen experimentellen Daten verglichen. Dabei zeigt sich, dass die verschiedenen Parametersätze des chiralen Modells und die Rechnungen für ein nichtwechselwirkendes, ideales Hadronengas eine ähnlich gute Beschreibung der gemessenen Weite liefern. Die deduzierten Ausfrierwerte für die Temperatur sind sensitiv auf das Phasenübergangsverhalten und liegen unterhalb der jeweiligen kritischen Temperatur. Die vorhergesagten Ausfriermassen sind in allen Parametrisierungen sehr ähnlich mit Abweichungen bis zu 15% von den entsprechenden Vakuumwerten. Die Untersuchung der Eigenschaften von Vektormesonen in dichter Materie erfolgt in der Mittleren-Feld- und in der HartreeNäherung. Hierbei zeigt sich eine signifikante Reduzierung der Teilchenmassen durch Vakuumpolarisationseffekte.
Abstract: The e ect of vacuum fluctuations on the in-medium hadronic properties is investigated using a chiral SU(3) model in the nonlinear realization. The e ect of the baryon Dirac sea is seen to modify hadronic properties and in contrast to a calculation in mean field approximation it is seen to give rise to a significant drop of the vector meson masses in hot and dense matter. This e ect is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation (RHA), where the baryon self energy is modified due to interactions with both the non-strange ( ) and the strange ( ) scalar fields.
Abstract: The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) Ã É approach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The inmedium masses turn out to differ up to 150 MeV from their vacuum values.
We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.
Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.
The yields of strange particles are calculated with the UrQMD model for p,Pb(158 AGeV)Pb collisions and compared to experimental data. The yields are enhanced in central collisions if compared to proton induced or peripheral Pb+Pb collisions. The enhancement is due to secondary interactions. Nevertheless, only a reduction of the quark masses or equivalently an increase of the string tension provides an adequate description of the large observed enhancement factors (WA97 and NA49). Furthermore, the yields of unstable strange resonances as the Lambda star(1520) resonance or the phi meson are considerably affected by hadronic rescattering of the decay products.
Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.
Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.
A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.
We investigate various properties of neutron star matter within an e ective chiral SU(3)L × SU(3)R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hy- peron degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS 4/3, the chiral model allows only for fS 1/3 and predicts that 0, + and 0 will not exist in star, in contrast to the Walecka-type model. PACS: 26.60+c, 21.65+f, 24.10Jv