Refine
Document Type
- Conference Proceeding (3)
- Article (2)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Biodiversity (2)
- Annotation (1)
- BIOfid (1)
- Inter-annotator agreement (1)
- Named entity recognition (1)
- Ontologies (1)
- Semantic portal (1)
- Specialized Information Service (1)
- Specialized information service (1)
- Taxon (1)
In an ideal world, extraction of machine-readable data and knowledge from natural-language biodiversity literature would be done automatically, but not so currently. The BIOfid project has developed some tools that can help with important parts of this highly demanding task, while certain parts of the workflow cannot be automated yet. BIOfid focuses on the 20th century legacy literature, a large part of which is only available in printed form. In this workshop, we will present the current state of the art in mobilisation of data from our corpus, as well as some challenges ahead of us. Together with the participants, we will exercise or explain the following tasks (some of which can be performed by the participants themselves, while other tasks currently require execution by our specialists with special equipment): Preparation of text files as an input; pre-processing with TextImager/TextAnnotator; semiautomated annotation and linking of named entities; generation of output in various formats; evaluation of the output. The workshop will also provide an outlook for further developments regarding extraction of statements from natural-language literature, with the long-term aim to produce machine-readable data from literature that can extend biodiversity databases and knowledge graphs.
Biodiversity information is contained in countless digitized and unprocessed scholarly texts. Although automated extraction of these data has been gaining momentum for years, there are still innumerable text sources that are poorly accessible and require a more advanced range of methods to extract relevant information. To improve the access to semantic biodiversity information, we have launched the BIOfid project (www.biofid.de) and have developed a portal to access the semantics of German language biodiversity texts, mainly from the 19th and 20th century. However, to make such a portal work, a couple of methods had to be developed or adapted first. In particular, text-technological information extraction methods were needed, which extract the required information from the texts. Such methods draw on machine learning techniques, which in turn are trained by learning data. To this end, among others, we gathered the BIOfid text corpus, which is a cooperatively built resource, developed by biologists, text technologists, and linguists. A special feature of BIOfid is its multiple annotation approach, which takes into account both general and biology-specific classifications, and by this means goes beyond previous, typically taxon- or ontology-driven proper name detection. We describe the design decisions and the genuine Annotation Hub Framework underlying the BIOfid annotations and present agreement results. The tools used to create the annotations are introduced, and the use of the data in the semantic portal is described. Finally, some general lessons, in particular with multiple annotation projects, are drawn.
The Specialized Information Service Biodiversity Research (BIOfid) has been launched to mobilize valuable biological data from printed literature hidden in German libraries for over the past 250 years. In this project, we annotate German texts converted by OCR from historical scientific literature on the biodiversity of plants, birds, moths and butterflies. Our work enables the automatic extraction of biological information previously buried in the mass of papers and volumes. For this purpose, we generated training data for the tasks of Named Entity Recognition (NER) and Taxa Recognition (TR) in biological documents. We use this data to train a number of leading machine learning tools and create a gold standard for TR in biodiversity literature. More specifically, we perform a practical analysis of our newly generated BIOfid dataset through various downstream-task evaluations and establish a new state of the art for TR with 80.23% F-score. In this sense, our paper lays the foundations for future work in the field of information extraction in biology texts.
With the ongoing loss of global biodiversity, long-term recordings of species distribution patterns are increasingly becoming important to investigate the causes and consequences for their change. Therefore, the digitization of scientific literature, both modern and historical, has been attracting growing attention in recent years. To meet this growing demand the Specialised Information Service for Biodiversity Research (BIOfid) was launched in 2017 with the aim of increasing the availability and accessibility of biodiversity information. Closely tied to the research community the interdisciplinary BIOfid team is digitizing data sources of biodiversity related research and provides a modern and professional infrastructure for hosting and sharing them. As a pilot project, German publications on the distribution and ecology of vascular plants, birds, moths and butterflies covering the past 250 years are prioritized. Large parts of the text corpus defined in accordance with the needs of the relevant German research community have already been transferred to a machine-readable format and will be publicly accessible soon. Software tools for text mining, semantic annotation and analysis with respect to the current trends in machine learning are developed to maximize bioscientific data output through user-specific queries that can be created via the BIOfid web portal (https://www.biofid.de/). To boost knowledge discovery, specific ontologies focusing on morphological traits and taxonomy are being prepared and will continuously be extended to keep up with an ever-expanding volume of literature sources.
BIOfid is a specialized information service currently being developed to mobilize biodiversity data dormant in printed historical and modern literature and to offer a platform for open access journals on the science of biodiversity. Our team of librarians, computer scientists and biologists produce high-quality text digitizations, develop new text-mining tools and generate detailed ontologies enabling semantic text analysis and semantic search by means of user-specific queries. In a pilot project we focus on German publications on the distribution and ecology of vascular plants, birds, moths and butterflies extending back to the Linnaeus period about 250 years ago. The three organism groups have been selected according to current demands of the relevant research community in Germany. The text corpus defined for this purpose comprises over 400 volumes with more than 100,000 pages to be digitized and will be complemented by journals from other digitization projects, copyright-free and project-related literature. With TextImager (Natural Language Processing & Text Visualization) and TextAnnotator (Discourse Semantic Annotation) we have already extended and launched tools that focus on the text-analytical section of our project. Furthermore, taxonomic and anatomical ontologies elaborated by us for the taxa prioritized by the project’s target group - German institutions and scientists active in biodiversity research - are constantly improved and expanded to maximize scientific data output. Our poster describes the general workflow of our project ranging from literature acquisition via software development, to data availability on the BIOfid web portal (http://biofid.de/), and the implementation into existing platforms which serve to promote global accessibility of biodiversity data.