Refine
Year of publication
Document Type
- Article (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- BCOR (1)
- BCORL1 (1)
- Brain tumors (1)
- CVID (1)
- Cancer (1)
- Canis lupus (1)
- Children and adolescents (1)
- Clinical Trials and Observations (1)
- European Society for Immunodeficiencies (ESID) (1)
- German PID-NET registry (1)
Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.
Background Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1 -/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.
Chemical ozone loss in winter 1991–1992 is recalculated based on observations of the HALOE satellite instrument, Version 19, ER-2 aircraft measurements and balloon data. HALOE satellite observations are shown to be reliable in the lower stratosphere below 400 K, at altitudes where the measurements are most likely disturbed by the enhanced sulfate aerosol loading, as a result of the Mt.~Pinatubo eruption in June 1991. Significant chemical ozone loss (13–17 DU) is observed below 380 K from Kiruna balloon observations and HALOE satellite data between December 1991 and March 1992. For the two winters after the Mt. Pinatubo eruption, HALOE satellite observations show a stronger extent of chemical ozone loss towards lower altitudes compared to other Arctic winters between 1991 and 2003. In spite of already occurring deactivation of chlorine in March 1992, MIPAS-B and LPMA balloon observations indicate that chlorine was still activated at lower altitudes, consistent with observed chemical ozone loss occurring between February and March and April. Large chemical ozone loss of more than 70 DU in the Arctic winter 1991–1992 as calculated in earlier studies is corroborated here.
Wolves (Canis lupus) are currently showing a remarkable comeback in the highly frag-mented cultural landscapes of Germany. We here show that wolf numbers increasedexponentially between 2000 and 2015 with an annual increase of about 36%. Wedemonstrate that the first territories in each newly colonized region were establishedover long distances from the nearest known reproducing pack on active militarytraining areas (MTAs). We show that MTAs, rather than protected areas, served asstepping-stones for the recolonization of Germany facilitating subsequent spreadingof wolf territories in the surrounding landscape. We did not find any significant differ-ence between MTAs and protected areas with regard to habitat. One possible reasonfor the importance of MTAs may be their lower anthropogenic mortality rates com-pared to protected and other areas. To our knowledge, this is the first documented casewhere MTAs facilitate the recolonization of an endangered species across large areas.
Background: About 2000 children and adolescents under the age of 18 are diagnosed with cancer each year in Germany. Because of current medical treatment methods, a high survival rate can be reached for many types of the disease. Nevertheless, patients face a number of long-term effects related to the treatment. As a result, physical and psychological consequences have increasingly become the focus of research in recent years. Social dimensions of health have received little attention in health services research in oncology so far. Yet, there are no robust results that allow an estimation of whether and to what extent the disease and treatment impair the participation of children and adolescents and which factors mediate this effect. Social participation is of great importance especially because interactions with peers and experiences in different areas of life are essential for the development of children and adolescents.
Methods: Data are collected in a longitudinal, prospective, observational multicenter study. For this purpose, all patients and their parents who are being treated for cancer in one of the participating clinics throughout Germany will be interviewed within the first month after diagnosis (t1), after completion of intensive treatment (t2) and half a year after the end of intensive treatment (t3) using standardized questionnaires. Analysis will be done by descriptive and multivariate methods.
Discussion: The results can be used to identify children and adolescents in high-risk situations at an early stage in order to be able to initiate interventions tailored to the needs. Such tailored interventions will finally reduce the risk of impairments in the participation of children and adolescents and increase quality of life.
Trial registration: ClinicalTrials.gov: NCT04101123.
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 kaBP, and between 60 and 65 kaBP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ 13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ 13C based on modelled land carbon storage, and palaeo-archives of ocean δ 13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ 13 C changes.
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.
Chemical ozone loss in winter 1991–1992 is recalculated based on observations of the HALOE satellite instrument, ER-2 aircraft measurements and balloon data. HALOE satellite observations are shown to be reliable in the lower stratosphere below 400 K, at altitudes where profiles are most likely disturbed by the enhanced sulfate aerosols, as a result of the Mt. Pinatubo eruption in June 1991. Very large chemical ozone loss was observed below 400 K from Kiruna balloon observations between December and March 1992. Additionally, for the two winters after the Mt. Pinatubo eruption, HALOE satellite observations show a stronger extent of chemical ozone loss at lower altitudes compared to other Arctic winter between 1991 and 2003. In stipe of already occurring deactivation of chlorine in March 1992, Mipas-B and LPMA balloon observations indicate still chlorine activation at lower altitudes, consistent with observed chemical ozone loss occurring between February and March and April. Enhanced chemical ozone loss in the Arctic winter 1991–1992 as calculated in earlier studies is corroborated here.
Multitasking is ubiquitous in our everyday life. Accordingly, situations in which two or more tasks need to be handled concurrently or in close temporal succession have been studied intensely. Different paradigms have been developed in that context (Koch et al., 2018). Over the last decades, the psychological refractory period (PRP) paradigm has dominated dual-task research, because it allows quantitative predictions of reaction time increases coupled to stimulus onset asynchrony. Part of the success of this paradigm is grounded in the fact that most of the studies are run under strict experimental control with very elementary tasks, mostly characterized by a definite start and ending. However, it remains unclear whether these limited settings sufficiently reflect the range of eventualities we find in real life. Rather, there is accumulating evidence that important factors modulating multitask performance are not sufficiently captured by the PRP approach. Here we focus on evidence that motor responses that involve continuous interaction with the environment may engage processes that alter the coordination of concurrently performed tasks in fundamental ways. ...