Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
G-protein-coupled receptor (GPCR) expression is extensively studied in bulk cDNA, but heterogeneity and functional patterning of GPCR expression in individual vascular cells is poorly understood. Here, we perform a microfluidic-based single-cell GPCR expression analysis in primary smooth muscle cells (SMC) and endothelial cells (EC). GPCR expression is highly heterogeneous in all cell types, which is confirmed in reporter mice, on the protein level and in human cells. Inflammatory activation in murine models of sepsis or atherosclerosis results in characteristic changes in the GPCR repertoire, and we identify functionally relevant subgroups of cells that are characterized by specific GPCR patterns. We further show that dedifferentiating SMC upregulate GPCRs such as Gpr39, Gprc5b, Gprc5c or Gpr124, and that selective targeting of Gprc5b modulates their differentiation state. Taken together, single-cell profiling identifies receptors expressed on pathologically relevant subpopulations and provides a basis for the development of new therapeutic strategies in vascular diseases.
Role of Orphan G-protein-coupled receptor GPRC5B in smooth muscle contractility and differentiation
(2019)
G protein coupled receptors (GPCRs) are the largest family of cell-surface receptors encoded in the human genome. They mediate the cellular responses to a wide variety of stimuli, ranging from light, odorants, and metabolic cues to hormones, neurotransmitters, and local mediators. Upon ligand binding, the GPCR undergoes conformational changes resulting in the activation of heterotrimeric G-proteins belonging to the families Gs, Gi/o, Gq/11, G12/13, which in turn mediate the downstream signaling. While most of the 360 non-olfactory GPCRs are well studied, approximately 120 GPCRs are still considered "orphan", meaning that their mechanism of activation and biological function is unknown. GPCRs have been functionally described in the regulation of almost all organ systems, and their dysregulation has been implicated in the pathogenesis of a multitude of diseases. In the vascular system, the contractile tone of vessels is crucially regulated by GPCRs. Substances that act through G12/13- and Gq/11-coupled GPCRs are associated with facilitation of contraction, while Gs-coupled GPCRs are usually associated with the induction of relaxation. Furthermore, while Gq/11 pathway activation promotes proliferation and dedifferentiation of vascular smooth muscle cells (VSMC), G12/13 and Gs signaling pathways promote expression of contractile proteins and differentiation.
The functional properties of VSMC depend on the anatomical location, and a recent single-cell expression analysis showed that VSMC from different vascular beds have different patterns of GPCR expression. Interestingly, smooth muscle cells (SMCs) from resistance arteries not only express various GPCRs for known modulators of vascular tone, but also a number of orphan GPCRs. These results suggest a potential role of orphan GPCRs in the modulation of blood pressure. Orphan GPCR GPRC5B was one of the GPCRs enriched in resistance arteries, and this receptor was also upregulated in dedifferentiated aortal SMC. The function of GPRC5B in these types of SMC is currently unknown. In vitro studies suggested that GPRC5B negatively regulates obesity, inflammation, insulin secretion and fibrotic activity, but there are no data available with respect to its function in regulation of vascular tone or other SMC functions.
Our study aimed at the identification of the specific functions of GPRC5B in SMC. To do so, we generated a SMC-specific GPRC5B-deficient mouse line by crossing Gprc5bfl/fl mice with smooth muscle-specific, tamoxifen-inducible Myh11-CreERT2 mice. We found that SMC-specific deletion of GPRC5B did neither affect myogenic tone in pressure myography, nor the response to the contractile agonists in wire myography. In contrast, vessel relaxation in response to prostacyclin analogues cicaprost and iloprost, which act on the prostacyclin receptor IP, were increased. These results suggested a selective improvement of IP receptor signaling. The IP receptor is coupled to Gs protein, it promotes vasorelaxation and acts as a restraint on platelet activation. Using overexpression of IP and GPRC5B in HEK cells, we found that GPRC5B physically interacts with the IP receptor and controls IP trafficking and membrane localization. Furthermore, we found that membrane IP receptor expression was increased in GPRC5B-deficient human aortic SMC and in resistance vessels of SMC-specific GPRC5B. To investigate the importance of increased IP-mediated signaling in SMC in vivo, we measured blood pressure in two mouse models of hypertension. We found that SMC-deletion of Gprc5b resulted in a significant reduction of blood pressure compared with control mice, which suggested that Gprc5b negatively regulated relaxation in hypertensive disease by decreasing IP mediated relaxation. In line with this notion we found that application of the IP antagonist Cay10441 largely abrogated the beneficial effect of GPRC5B inactivation in this hypertension model. Another important function of the IP receptor is the regulation of SMC differentiation, which led us to investigate the differentiation state of GPRC5B-deficient SMC. We found that deletion of GPRC5B enhanced expression of contractile genes and reduced expression of proliferative markers. This improved differentiation was, at least partially, due to increased IP signaling in SMC. Moreover, in a mouse model of atherosclerosis SMC-specific deletion of Gprc5b reduced plaque area and contributed to a more stable fibrous cap by promoting differentiation.
In conclusion, deletion of GPRC5B in SMC significantly improved contractility and differentiation by increasing IP receptor membrane availability and signaling.