### Refine

#### Year of publication

#### Has Fulltext

- yes (16)

#### Is part of the Bibliography

- no (16)

#### Keywords

- Chemikalie (1)
- Deuteron (1)
- Dynamic transport (1)
- Equation of state (1)
- HBT correlation (1)
- HBT interferometry (1)
- HBT puzzle (1)
- HICs (1)
- Hadron potentials (1)
- Hadronic potential (1)

#### Institute

It is shown that the inclusion of hadronic interactions, and in particular nuclear potentials, in simulations of heavy ion collisions at the SPS energy range can lead to obvious correlations of protons. These correlations contribute significantly to an intermittency analysis as performed at the NA61 experiment. The beam energy and system size dependence is studied by comparing the resulting intermittency index for heavy ion collisions of different nuclei at beam energies of 40A, 80A and 150A GeV. The resulting intermittency index from our simulations is similar to the reported values of the NA61 collaboration, if nuclear interactions are included. The observed apparent intermittency signal is the result of the correlated proton pairs with small relative transverse momentum Δpt, which would be enhanced by hadronic potentials, and this correlation between the protons is slightly influenced by the coalescence parameters and the relative invariant four-momentum qinv cut.

Probing the density dependence of the symmetry potential in intermediate energy heavy ion collisions
(2005)

Based on the ultrarelativistic quantum molecular dynamics (UrQMD) model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Delta-/Delta++ and pi -/pi + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the pi -/pi + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the pi -/pi + ratio significantly, though it alters only slightly the pi- and pi+ total yields. The pi- yields, especially at midrapidity or at low transverse momenta and the p-/pi+ ratios at low transverse momenta, are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both, K0 and K+ mesons, is also investigated.

The influence of the isospin-independent, isospin- and momentum-dependent equation of state (EoS), as well as the Coulomb interaction on the pion production in intermediate energy heavy ion collisions (HICs) is studied for both isospin-symmetric and neutron-rich systems. The Coulomb interaction plays an important role in the reaction dynamics, and strongly influences the rapidity and transverse momentum distributions of charged pions. It even leads to the pi- pi+ ratio deviating slightly from unity for isospin-symmetric systems. The Coulomb interaction between mesons and baryons is also crucial for reproducing the proper pion flow since it changes the behavior of the directed and the elliptic flow components of pions visibly. The EoS can be better investigated in neutron-rich system if multiple probes are measured simultaneously. For example, the rapidity and the transverse momentum distributions of the charged pions, the pi- pi+ ratio, the various pion flow components, as well as the difference of pi+-pi- flows. A new sensitive observable is proposed to probe the symmetry potential energy at high densities, namely the transverse momentum distribution of the elliptic flow difference [Delta v_2^pi+ - pi-(p_t rm c.m.].

The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of Isospin dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coe cient. The uncertainties about the symmetry energy coe cient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.

We investigate the sensitivity of several observables to the density dependence of the symmetry potential within the microscopic transport model UrQMD (ultrarelativistic quantum molecular dynamics model). The same systems are used to probe the symmetry potential at both low and high densities. The influence of the symmetry potentials on the yields of pi-, pi+, the pi-/pi+ ratio, the n/p ratio of free nucleons and the t/3He ratio are studied for neutron-rich heavy ion collisions (208Pb+208Pb, 132Sn+124Sn, 96Zr+96Zr) at E_b=0.4A GeV. We find that these multiple probes provides comprehensive information on the density dependence of the symmetry potential.

The rapidity dependence of the single- and double- neutron to proton ratios of nucleon emission from isospin-asymmetric but mass-symmetric reactions Zr+Ru and Ru+Zr at energy range 100 ~ 800 A MeV and impact parameter range 0 ~ 8 fm is investigated. The reaction system with isospin-asymmetry and mass-symmetry has the advantage of simultaneously showing up the dependence on the symmetry energy and the degree of the isospin equilibrium. We find that the beam energy- and the impact parameter dependence of the slope parameter of the double neutron to proton ratio (F_D) as function of rapidity are quite sensitive to the density dependence of symmetry energy, especially at energies E_b ~ 400 A MeV and reduced impact parameters around 0.5. Here the symmetry energy effect on the F_D is enhanced, as compared to the single neutron to proton ratio. The degree of the equilibrium with respect to isospin (isospin mixing) in terms of the F_D is addressed and its dependence on the symmetry energy is also discussed.

Several observables of unbound nucleons which are to some extent sensitive to the medium modifications of nucleon-nucleon elastic cross sections in neutron-rich intermediate energy heavy ion collisions are investigated. The splitting effect of neutron and proton effective masses on cross sections is discussed. It is found that the transverse flow as a function of rapidity, the Q_zz as a function of momentum, and the ratio of halfwidths of the transverse to that of longitudinal rapidity distribution R_t/l are very sensitive to the medium modifications of the cross sections. The transverse momentum distribution of correlation functions of two-nucleons does not yield information on the in-medium cross section.

A deep convolutional neural network (CNN) is developed to study symmetry energy (Esym(ρ)) effects by learning the mapping between the symmetry energy and the two-dimensional (transverse momentum and rapidity) distributions of protons and neutrons in heavy-ion collisions. Supervised training is performed with labeled data-set from the ultrarelativistic quantum molecular dynamics (UrQMD) model simulation. It is found that, by using proton spectra on event-by-event basis as input, the accuracy for classifying the soft and stiff Esym(ρ) is about 60% due to large event-by-event fluctuations, while by setting event-summed proton spectra as input, the classification accuracy increases to 98%. The accuracies for 5-label (5 different Esym(ρ)) classification task are about 58% and 72% by using proton and neutron spectra, respectively. For the regression task, the mean absolute errors (MAE) which measure the average magnitude of the absolute differences between the predicted and actual L (the slope parameter of Esym(ρ)) are about 20.4 and 14.8 MeV by using proton and neutron spectra, respectively. Fingerprints of the density-dependent nuclear symmetry energy on the transverse momentum and rapidity distributions of protons and neutrons can be identified by convolutional neural network algorithm.

The effect of nuclear interactions on measurable net-proton number fluctuations in heavy ion collisions at the SIS18/GSI accelerator is investigated. The state of the art UrQMD model including interaction potentials is employed. It is found that the nuclear forces enhance the baryon number cumulants, as predicted from grand canonical thermodynamical models. The effect however is smeared out for proton number fluctuations due to iso-spin randomization and global baryon number conservation, which decreases the cumulant ratios. For a rapidity acceptance window larger than Δy > 0.4 the effects of global baryon number conservation dominate and all cumulant ratios are significantly smaller than 1.

The nuclear stopping, the elliptic flow, and the HBT interferometry are calculated by the UrQMD transport model, in which potentials for “pre-formed” particles (string fragments) from color fluxtube fragmentation as well as for confined particles are considered. This description provides stronger pressure at the early stage and describes these observables better than the default cascade mode (where the “pre-formed” particles from string fragmentation are treated to be free-streaming). It should be stressed that the inclusion of potential interactions pushes down the calculated HBT radius RO and pulls up the RS so that the HBT time-related puzzle disappears throughout the energies from AGS, SPS, to RHIC.